Skip to main content

Advertisement

Log in

Chronobiology of the Immune System

Implication for the Delivery of Therapeutic Agents

  • Immunological Basis Of Disease
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Activation, proliferation and circulation of immune cells vary predictably according to circadian (approximately 24-hour) rhythms. These biological rhythms are endogenous and genetically based. Rhythms in nocturnally active experimental animals such as mice or rats are 12 hours out of phase from those in diurnally active humans. In animal studies, the toxic and immunomodulatory effects of agents such as interferon, interleukin-2 and cyclosporin can vary by 50% or more according to time of administration, presumably as a result of circadian rhythms.

Immunological circadian rhythms appear to be maintained in liver transplant patients receiving continuous infused immunosuppressive therapy. However, rhythms were altered in patients with advanced stage malignancy or HIV infection, and in cancer patients receiving infusions of cytokines on a standard regimen.

Translation of these preclinical and clinical findings to drug delivery has just begun. A portable programmable-in-time pump was used to modulate delivery of interferon-α to patients with renal cell cancer. Maximal delivery was from 1800 to 2400h, with no delivery from 0600 to 1200h. Dosages of 15 to 20 MU/m2/day for 21 days were tolerated, 2 to 3 times higher than dosages administered using a standard regimen.

Further trials of chronobiologically modulated therapy are warranted to establish its effectiveness in treatment of immunological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Touitou Y, Haus E, editors. Biological rhythms in clinical and laboratory medicine. Berlin: Springer Verlag, 1992

    Google Scholar 

  2. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 1971; 58: 2112–6

    Article  Google Scholar 

  3. Hall JC. Genetics of circadian rhythms. Annu Rev Genet 1990; 24: 659–97

    Article  PubMed  CAS  Google Scholar 

  4. Reinberg A, Touitou Y, Restoin A, et al. The genetic background of circadian and ultradian rhythm patterns of 17-hydroxycorticosteroids: a cross-twin study. J Endocrinol 1985; 105: 247–53

    Article  PubMed  CAS  Google Scholar 

  5. Klein DC, Moore RY, Reppert SM. Suprachiasmatic nucleus: the mind’s clock. Oxford: Oxford University Press, 1991

    Google Scholar 

  6. Lewy A, Wehr T, Goodwin F, et al. Light suppresses melatonin secretion in humans. Science 1980; 210: 1267–9

    Article  PubMed  CAS  Google Scholar 

  7. Stehle JH, Foulkes NS, Molina CA, et al. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 1993; 365: 314–20

    Article  PubMed  CAS  Google Scholar 

  8. Reinberg A, Halberg F. Circadian chronopharmacology. Annu Rev Pharmacol 1971; 11: 455–92

    Article  PubMed  CAS  Google Scholar 

  9. Bruguerolle B, Lemmer B. Recent advances in chronopharmacokinetics: methodological problems. Life Sci 1993; 52: 1809–24

    Article  PubMed  CAS  Google Scholar 

  10. Taylor AN, Davies RJ, Hendrick DJ, et al. Recurrent nocturnal asthmatic reactions to bronchial provocation tests. Clin Allergy 1979; 213–9

    Google Scholar 

  11. Gervais P, Reinberg A, Gervais C, et al. Twenty-four hour rhythm in the bronchial hyperreactivity to house dust in asthmatics. J Allergy Clin Immunol 1977; 59: 207–13

    Article  PubMed  CAS  Google Scholar 

  12. De Vries K, Goei J, Booy-Noord H, et al. Changes during 24 hours in the lung function and histamine hyperreactivity of the bronchial tree in asthmatic and bronchitic patients. Int Arch Allergy 1962; 20: 93–101

    Article  PubMed  Google Scholar 

  13. Cove-Smith MS, Kabler PA, Pownall R, et al. Circadian variation in an immune response in man. BMJ 1978; 2: 253

    Article  PubMed  CAS  Google Scholar 

  14. Knapps MS, Cove-Smith MS, Dugdale R, et al. Possible effect of time on renal allograft rejection. BMJ 1979; 1: 75–7

    Article  Google Scholar 

  15. Lévi F, Canon C, Touitou Y, et al. Seasonal modulation of the circadian time structure of circulating T and NK lymphocyte subsets from healthy subjects. J Clin Invest 1988; 81: 407–13

    Article  PubMed  Google Scholar 

  16. Gatti G, Masera R, Cavallo R, et al. Circadian variations of interferon-induced enhancement of human natural killer (NK) cell activity. Cancer Detect Prev 1988; 12: 431–8

    Google Scholar 

  17. Bourin P, Mansour I, Doinel C, et al. Circadian rhythms of circulating NK cells in healthy and human immunodeficiency virus-infected men. Chronobiol Int 1993; 10: 298–305

    Google Scholar 

  18. Ramot B, Brok-Simoni F, Chiveidman E, et al. Blood leucocyte enzymes III: diurnal rhythm of activity in isolated lymphocytes of normal subjects and chronic lymphatic leukemia patients. Br J Haematol 1976; 34: 79–85

    Google Scholar 

  19. Heitbrock HW, Mertelsmann R, Garbrecht M. Circadian rhythm of RNA polymerase B activity in human peripheral blood lymphocytes. Int J Chronobiol 1976; 3: 255–61

    CAS  Google Scholar 

  20. Eskola J, Frey H, Molnar G, et al. Biological rhythm of cell-mediated immunity in man. Clin Exp Immunol 1976; 26: 253–7

    PubMed  CAS  Google Scholar 

  21. Tavadia HB, Fleming KA, Hume PD, et al. Circadian rhythmicity of plasma Cortisol and PHA-induced lymphocyte transformation. Clin Exp Immunol 1972; 22: 190–3

    Google Scholar 

  22. Kaplan MS, Byers VS, Levin AS, et al. Circadian rhythm of stimulated blastogenesis: a 24 hour cycle in the mixed leucocyte culture reaction and with SKDS stimulation. J Allergy Clin Immunol 1976; 58: 180–93

    Article  PubMed  CAS  Google Scholar 

  23. Zabel P, Horst H, Kreiber C, et al. Circadian rhythm of interleukin-1 production of monocytes and the influence of endogenous glucocorticoids in man. Klin Wochenschr 1990; 68: 1217–21

    Article  PubMed  CAS  Google Scholar 

  24. Bourin P, Lévi F, Mansour I, et al. Circadian rhythm of interleukin-1 (IL-1) in serum of healthy men. Annu Rev Chronopharmacol 1990; 7: 201–4

    CAS  Google Scholar 

  25. Lemmer B, Schwulera U, Thrun A, et al. Circadian rhythm of soluble interleukin-2 receptor in healthy individuals. Eur Cytokine Netw 1992; 3: 335–6

    PubMed  CAS  Google Scholar 

  26. Lévi F, Canon C, Deprés-Brummer P, et al. The rhythmic organization of the immune network: implications for the chronopharmacologic delivery of interferons, interleukins and cyclosporin. Adv Drug Deliv Rev 1992; 9: 85–112

    Google Scholar 

  27. Abo T, Kawate K, Itoh K, et al. Studies on the bioperiodicity of the immune response I: circadian rhythms of human T, B and K cell traffic in the peripheral blood. J Immunol 1981; 126: 1360–3

    PubMed  CAS  Google Scholar 

  28. Haus E, Lakatua D, Swoyer J, et al. Chronobiology in hematology and immunology. Am J Anat 1983; 168: 467–517

    Article  PubMed  CAS  Google Scholar 

  29. Abo T, Kumagai K. Studies on surface immunoglobulin on human B lymphocytes. Clin Exp Immunol 1978; 33: 441–52

    PubMed  CAS  Google Scholar 

  30. Bertouch JV, Roberts-Thomson PJ, Bradley J. Diurnal variation of lymphocyte subsets identified by monoclonal antibodies. BMJ 1983; 286: 1171–2

    Article  PubMed  CAS  Google Scholar 

  31. Ritchie WS, Oswald I, Micklem HS, et al. Circadian variation of lymphocyte subpopulations: a study with monoclonal antibodies. BMJ 1983; 286: 1773–5

    Article  PubMed  CAS  Google Scholar 

  32. Lévi F, Canon C, Blum JP, et al. Large-amplitude circadian rhythm in helper:suppressor ratio of peripheral blood lymphocytes. Lancet 1983; 2: 462–3

    Article  PubMed  Google Scholar 

  33. Lévi F, Canon C, Blum JP, et al. Circadian and/or circahemidian rhythms in nine lymphocyte-related variables from peripheral blood of healthy subjects. J Immunol 1985; 134: 217–55

    PubMed  Google Scholar 

  34. Lévi F, Canon C, Touitou Y. et al. Circadian rhythms in circulating T lymphocyte subsets, plasma total and free Cortisol and testosterone in healthy men. Clin Exp Immunol 1988; 71: 320–35

    Google Scholar 

  35. Lévi F, Canon C, Dipalma M, et al. When should the immune clock be reset? From circadian pharmacodynamics to temporally optimized drug delivery. Ann NY Acad Sci 1991; 618: 312–29

    Article  PubMed  Google Scholar 

  36. Ratte J, Halberg F, Kiihl JFW, et al. Circadian variations in the rejection of rat kidney allograft. Surgery 1973; 73: 102–8

    Google Scholar 

  37. Reinberg A, Lagoguey M, Cesselin F, et al. Circadian and circannual rhythms in plasma hormones and other variables of five healthy young human males. Acta Endocrinol 1978; 88: 417–25

    PubMed  CAS  Google Scholar 

  38. Touitou Y, Lagoguey M, Bogdan A, et al. Seasonal rhythms of plasma gonadotrophins: their persistence in elderly men and women. J Endocrinol 1983; 96: 15–22

    Article  PubMed  CAS  Google Scholar 

  39. Lévi F, Halberg F. Circaseptan bioperiodicity. Spontaneous and reactive, and the search for pacemakers. La Ricerca Clin Lab 1982; 12: 323–70

    Google Scholar 

  40. Besarab A, Wesson L, Jarrell B, et al. Effects of delayed graft function and ALG on the circaseptan (about 7 days) rhythm of human renal allograft rejection. Transplantation 1983; 35: 562–6

    Article  PubMed  CAS  Google Scholar 

  41. Tsai T, Burns RE, Scheving LE. Circadian influence on the immunization of mice with live Bacillus Calmette-Guérin (BCG) and subsequent challenge with Ehrlich ascites carcinoma. Chronobiologia 1979; 6: 187–202

    PubMed  CAS  Google Scholar 

  42. Lévi F, Halberg F, Chihara G, et al. Chronoimmunomodulation: circadian, circaseptan and circannual aspects of immunopotentiation or suppression with lentinan. In: Takahashi R, Halberg F, Walker C, editors. Advances in the biosciences 41: toward chronopharmacology. Oxford: Pergamon Press, 1982: 289–311

    Google Scholar 

  43. Opp M, Obal F, Krueger J. Effects of α-MSH on sleep behavior and brain temperature: interactions with IL-1. Am J Physiol 1988; 255: R914–22

    PubMed  CAS  Google Scholar 

  44. Opp M, Obal F, Krueger J. Interleukin-1 alters rat sleep: temporal and dose related effects. Am J Physiol 1991; 260: R52–8

    PubMed  CAS  Google Scholar 

  45. Hrushesky W, Langevin T, Nygaard S. Circadian stipulation required for reduction of variability in TNF toxicity/efficacy. Proceedings of the International Conference on TNF and related cytotoxins; 1987 Sept 14-18: Heidelberg

  46. Sanchez de la Pena S, Hrushesly W, Wood P, et al. Host-tumor balance depends upon IL-2 circadian timing [abstract]. Proc Am Assoc Cancer Res 1993; 34: 57

    Google Scholar 

  47. Lévi F, Bourin P, Pages M, et al. Dosing-time of interleukin-2 affects both lethal and central nervous system toxicities in mice. Proc Am Assoc Cancer Res 1992; 33: 1964

    Google Scholar 

  48. Whittington R, Faulds D. Interleukin-2: a review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 1993; 46: 446–514

    Article  PubMed  CAS  Google Scholar 

  49. Roemeling R, De Maria L, Salzer M, et al. Circadian stage dependent response to interleukin-2 in mouse spleen and bone marrow. Annu Rev Chronopharmacol 1990; 7: 211–4

    Google Scholar 

  50. Kemeny M, Alava G, Oliver J. Improving responses in hepatomas with circadian-patterned hepatic artery infusions of recombinant interleukin-2. J Immunother 1992; 12: 219–23

    Article  PubMed  CAS  Google Scholar 

  51. Koren S, Fleischmann R. Circadian variations in myelosuppressive activity of interferon-alpha in mice: identification of an optimal treatment time associated with reduced myelosuppressive activity. Exp Hematol 1993; 21: 552–9

    PubMed  CAS  Google Scholar 

  52. Koren S, Fleischmann R. Optimal circadian timing reduces the myelosuppressive activity of recombinant murine interferon-gamma administered to mice. J Interferon Res 1993; 13: 187–95

    Article  PubMed  CAS  Google Scholar 

  53. Magnus G, Cavallini M, Halberg F, et al. Circadian toxicology of cyclosporin. Toxicol Appl Pharmacol 1985; 77: 181–5

    Article  PubMed  CAS  Google Scholar 

  54. Malmary-Nebot MF, Kabbaj K, Labat C, et al. Cyclosporin dosing-time dependent effects on plasma creatinine and body weight in male Wistar rats treated for 3 weeks. Chronobiol Int 1991; 8: 25–34

    Article  Google Scholar 

  55. Cavallini M, Halberg F, Tao L, et al. Circadian-stage dependent prolongation by cyclosporin of segmental pancreatic allograft function in the rat. Eur Surg Res 1986; 18: 375–82

    Article  PubMed  CAS  Google Scholar 

  56. Canon C, Levi F, Bennaceur M, et al. Alterations of circadian rhythms in lymphocyte subpopulations of patients with hematologic malignancies [abstract]. Cancer Chemother Pharmacol 1986; 18Suppl. 1: 58

    Google Scholar 

  57. Bourin P, Mansour I, Lévi F, et al. Precocious alterations of circadian rhythms in circulating B and T lymphocyte subsets in patients infected with human immunodeficiency virus (HIV). CR Acad Sci III 1989; 308: 431–6

    CAS  Google Scholar 

  58. Villette JM, Bourin P, Doinel C, et al. Circadian variations in plasma levels of hypophyseal, adrenocortical and testicular hormones in men infected with human immunodeficiency virus. J Clin Endocrinol Metab 1990; 70: 572–7

    Article  PubMed  CAS  Google Scholar 

  59. Vagnucci A, Winkelstein A. Circadian rhythm of lymphocytes and their glucocorticoid receptors in HIV-infected homosexual men. J Acquir Immune Defic Syndr 1993; 6: 1238–47

    PubMed  CAS  Google Scholar 

  60. Ferec C, Bourbigot B, Verlingue C, et al. Circadian variation of lymphocyte subsets after renal transplantation. Transplant Proc 1986; 18: 1308–10

    Google Scholar 

  61. Adam R, Canon C, Gigou M, et al. Present and future aspects of chronotherapy after liver transplantation. Proceedings of the Conference on Chronobiologie: Mecanismes et Applications Therapeutiques; 1991 Oct 17-18: Villejuif

  62. Lissoni P, Barni S, Achili C, et al. Endocrine effects of a 24-hour intravenous infusion of interleukin-2 in the immunotherapy of cancer. Anticancer Res 1990; 10: 753–8

    PubMed  CAS  Google Scholar 

  63. Spinazze S, Viviani S, Bidoli P, et al. Effects of prolonged subcutaneous administration of interleukin-2 on the circadian rhythms of Cortisol and β-endorphin in advanced small cell lung cancer patients. Tumori 1991; 77: 496–9

    PubMed  CAS  Google Scholar 

  64. Muller H, Hiemke C, Hammes E, et al. Subacute effects of interferon-alpha2 on adrenocorticotrophic hormone, Cortisol, growth hormone and prolactin in humans. Psychoneuroendocrinology 1992; 17: 459–65

    Article  PubMed  CAS  Google Scholar 

  65. Abrams PG. Evening administration of alpha interferon. N Engl J Med 1985; 443

    Google Scholar 

  66. Bocci V. Administration of interferon at night may increase its therapeutic index. Cancer Drug Deliv 1985; 2: 313–8

    Article  PubMed  CAS  Google Scholar 

  67. Indiveri F, Puppo F. Neuroendocrine effects of biological response modifiers. Proceedings of the 16th International Congress on Chemotherapy; 1989: Jerusalem: 234

    Google Scholar 

  68. Deprés-Brummer P, Lévi F, Di Palma M, et al. A phase I trial of 21 -day continuous venous infusion of alpha-interferon at circadian rhythm modulated rate in cancer patients. J Immunother 1991; 10: 440–7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Association pour la Recherche sur le Temps Biologique et la Chronothérapie, Hôpital Paul Brousse, 94800 Villejuif, France. The authors thank M. Lévi for the excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lévi, F., Bourin, P., Deprés-Brummer, P. et al. Chronobiology of the Immune System. Clin Immunother 2, 53–64 (1994). https://doi.org/10.1007/BF03258522

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258522

Keywords

Navigation