Skip to main content
Log in

Reducing Dislocations in GaAs and InP

  • Process
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Currently, the major issue in the growth of GaAs and InP single crystal density. This is necessitated by optical and electronis device performance requirements. This paper reviews the major appplications of these III–V compounds and then describes the theoretical analysis from which a practical realization of dislocation elimination in crystal growth can be based. Also outlined are recent developments in low temperature gradient growth and hardening by In-alloying that in some judicious combination offer the hope to meet device and IC fabrication objectives

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Laudise,J. Crystal Growth, 65 (1983) 3.

    Article  Google Scholar 

  2. V. Swaminathan, Bulletin of Materials Science, 4 (1982) 403.

    Article  Google Scholar 

  3. H. Goronkin, Robert O. Grondin and D.K. Ferry, Gallium Arsenide Technology, ed. D.K. Ferry (Indianapolis, Indiana: H.W. Sams and Co., Inc., 1985) 155–187.

  4. H. Hirayama, M. Togashi, N. Kato, M. Suzuki, Y. Matsuoka and Y. Kawasaki, IEEE Trans. Electron Devices, ED-33 (1986) 104.

    Article  Google Scholar 

  5. D.V. Morgan and F.H. Eisen, “Ion Implantation and Damage in GaAs,” Gallium Arsenide, ed. M.J. Howes and D.V. Morgan (New York, N.Y.: John Wiley and Sons, 1985) 161.

    Google Scholar 

  6. D.E. Holmes, K.R.E. Elliott, R.T. Chen and C.G. Kirkpátrick, “Stoichiometry-Related Centres in LEC-GaAs,” Semi-Insulating III—V Materials, ed. S. Makram-Ebeid and B. Tuck (Cheshire, U.K.: Shiva Publishing Ltd., 1982) 19–27.

    Google Scholar 

  7. H.M. Hobgood, L.B. Ta, A. Rohatgi, G.W. Eldridge and R.N. Thomas, “Residual Impurities and Defect Levels in Semi-Insulating GaAs Grown by Liquid Encapsulation Czochralski,” op cit. Reference 6, 28–35.

    Google Scholar 

  8. J.B. Clegg, “Impurity Analysis of Semi-Insulating GaAs,“ op cit. Reference 6, 80–91.

    Google Scholar 

  9. J.P. Farges, G. Jacob, C. Schemali, G.M. Martin, A. Mircea-Roussel and J. Hallois, “Undoped LEC GaAs with Improved Purity and Yield of S.I. Crystals,” op cit. Reference 6, 45–53.

    Google Scholar 

  10. T.R. Aucoin, R.L. Ross, M.J. Wade and R.D. Savage, Solid State Technology, 22 (1975) 59.

    Google Scholar 

  11. S. Tong-nien, L. Szu-lin and K. Shu-tseng, “The Preparation of Semi-Insulating and Low Dislocation Density InP Single Crystals,” op cit. Reference 6, 61–67.

    Google Scholar 

  12. R.J. Roedel, A.R. VonNeida, R. Caruso and L.R. Dawson, J. Electrochem. Soc., 126 (1979) 637.

    Article  Google Scholar 

  13. P. Petroff and R.L. Hartman, Appl. Phys. Letters,23 (1973) 469.

    Article  Google Scholar 

  14. S. Mahajan, V.G. Keramidas, A.D. Chin, S.N.G. Chu, W.A. Bonner and D.D. Manchon, Jr., In: Defects and Radiation Effects in Semiconductors 1980, Inst. Phys. Conf., Ser. 59 (Inst. Phys. London-Bristol, 1981) 413.

    Google Scholar 

  15. S. Mahajan et al., Appl. Phys. Letters, 38 (1981) 255

    Article  Google Scholar 

  16. A.K. Chin, “The Effect Of Crystal Defects on Device Performance and Reliability,” J. Crystal Growth, 70 (1984) 582.

    Article  Google Scholar 

  17. R.T. Blunt, S. Clark and D.J. Stirland, IEEE Trans, on Microwave Theory and Techniques, Vol. MIT 30 7 (1982) 943.

    Article  Google Scholar 

  18. G.M. Martin, G. Jacob, G. Poiblaud, A. Goitzene and C. Schwob, Inst. Phys. Conf. Ser., 59 (1980) 281.

    Google Scholar 

  19. D.E. Holmes, M.R. Brozel, I. Grant, R.M. Ware and D.J. Stirland, Appl. Phys. Lett., 42 (1983) 610.

    Article  Google Scholar 

  20. Y. Matsmoto and H. Watanabe, Jap. J. Appl. Phys., 21 (1982) L515.

    Article  Google Scholar 

  21. Y. Nanishi, S. Ishida, T. Honda, H. Yamazaki and S. Miyazawa, “Inhomogeneous GaAs FET Threshold Voltages Related to Dislocation Distribution,” Jap. J. Appl. Phys., 21 (1982) L335–L337.

    Article  Google Scholar 

  22. S. Miyazawa and F. Hyuga, IEEE Trans. Electron Devices, ED-33 (1986) 227.

    Article  Google Scholar 

  23. W.C. Dash, J. Appl. Phys., 29 (1958) 736.

    Article  Google Scholar 

  24. J.H. Matlock, Semiconductor Silicon 1977, ed. RR. Huff and E. Sirtl, (The Electrochemical Society, Princeton, N.J., 1977) 32.

  25. B.C. Grabmaier and J.G. Grabmaier, J. Crystal Growth, 13/14 (1972) 635.

    Google Scholar 

  26. E. Billig, Proc. Roy. Soc. London, A235 (1956) 37.

  27. D.C. Bennet and B. Sawyer, Bell Syst. Tech. J., 35 (1956) 637.

    Google Scholar 

  28. P. Penning, Philips Res. Rept., 13 (1958) 79.

    MATH  Google Scholar 

  29. S.F. Nygreh, J. Crystal Growth, 19 (1973) 21.

    Article  Google Scholar 

  30. A.S. Jordan, R. Caruso and A.R. VonNeida, Bell Syst. Tech. J., 59 (1980) 593.

    Google Scholar 

  31. A.S. Jordan, A.R. VonNeida and R. Caruso, J. Crystal Growth, 70 (1984) 555–573.

    Article  Google Scholar 

  32. A.S. Jordan, J. Crystal Growth, 71 (1985) 559–565.

    Article  Google Scholar 

  33. A.S. Jordan, R. Caruso, A.R. VonNeida and J.W. Nielsen, J. Appl. Phys., 52 (1981) 3331.

    Article  Google Scholar 

  34. N.P. Sazhin, M.G. Milvidskii, V.B. Osvenskii and O.G. Stoljarov, Soviet Phys. Solid State, 8 (1966) 22.

    Google Scholar 

  35. Y. Seki, H. Watanabe and J. Matsui, J. Appl. Phys., 49 (1978) 22.

  36. G.T. Brown, B. Cockayne and W.R. MacEwan, J. Crystal Growth, 51 (1981) 369.

    Article  Google Scholar 

  37. G.T. Brown, B. Cockayne, W.R. MacEwan and D.J. Ashen, J. Mater. Sci. Letters, 2 (1983) 667.

    Article  Google Scholar 

  38. A.S. Jordan, G.T. Brown, B. Cockayne, D. Brasen and W.A. Bonner, J. Appl. Phys., 58 (1985) 4389.

    Article  Google Scholar 

  39. G. Jacob, J. Crystal Growth, 58 (1982) 455.

    Article  Google Scholar 

  40. H.M. Hobgood, R.N. Thomas, D.L. Barrett, G.W. Eldridge, M.M. Sopira and M.C. Driver, “Large Diameter Low Dislocation In-Doped GaAs: Growth, Characterization and Implications for FET Fabrication,” Semi Insulating III–V Materials, ed. D.C. Look and J.S. Blakemore (Cheshire, U.K.: Shiva Publishing Ltd., 1984) 149–156.

    Google Scholar 

  41. A.R. VonNeida, R. Caruso and A.S. Jordan, to be published.

  42. A.G. Elliot, C.L. Wei, R. Farraro, G. Woolhouse, M. Scott and R. Hiskes, “Low Dislocation Density, Large Diameter, LEC GaAs,” J. Crystal Growth, 79 (1984) 169–178.

    Article  Google Scholar 

  43. T. Fukuda, J. Journal Appl. Phys., 22 (1983) 413–418.

    Google Scholar 

  44. A.S. Jordan, R. Caruso and A.R. VonNeida, Bell Sys. Tech. J., 62 (1983) 477–498.

    Google Scholar 

  45. J.M. Parsey, Y. Nanishi, J. Lagowski and H.C. Gatos, J. Electrochem. Soc., 129 (1982) 388.

    Article  Google Scholar 

  46. M. Peigen, Y. Jinhua, L. Shonchun, J. Daiwei and Z. Huifang, J. Crystal Growth, 65 (1983) 243.

    Article  Google Scholar 

  47. M.S.S. Young et al., to be published.

  48. A.S. Jordan and J.M. Parsey, J. Crystal Growth, to be published.

  49. K. Matsumoto, H. Morishita, M. Sasaki, S. Nishine, M. Yokogawa, M. Sekinobu, K. Todaz and S. Akai, “LEC Growth of 3 Inch Diameter Undoped SI GaAs with Good Reproducibility Using an Improved Hot Zone,” op cit. Reference 40, 175–177.

    Google Scholar 

  50. S. Miyazawa, T. Honda, Y. Ishii and S.I. Shida, Appl. Phys. Lett., 44 (1984) 410.

    Article  Google Scholar 

  51. D. Rumsby, I. Grant, M.R. Brozel, E.J. Foulkes and R.M. Ware, “Electrical Behavior of Annealed LEC GaAs,” op cit. Reference 41, 165–170.

    Google Scholar 

  52. A.K. Chin, A.R. VonNeida and R. Caruso, J. Electrochem. Soc., 129 (1982) 2386.

    Article  Google Scholar 

  53. A.K. Chin, R. Caruso, M.S.S. Young and A.R. VonNeida, Appl. Phys. Lett., 45 (1984) 552.

    Article  Google Scholar 

  54. A.K. Chin, I. Camlibel, R. Caruso, M.S.S. Young and A.R. VonNeida, J. Appl. Phys., 57 (1985) 2203.

    Article  Google Scholar 

  55. K. Terashima, T. Katsumate, F. Qrito, T. Kikuta and T. Fukuda, J. Journal Appl. Phys., 22 (1983) L325.

    Google Scholar 

  56. H. Kohda, K. Yamada, H. Nakanishi, T. Kobayashi, J. Osaka and K. Hoshikawa, J. Crystal Growth, 71 (1985) 813.

    Article  Google Scholar 

  57. S. Ozawa, private communication

Download references

Authors

Additional information

A.R. Von Neida received his Ph.D. in metallurgy from Yale University. He is currently a Distinguished Member of the Technical Staff of the Device Materials Research Department at AT&T Bell Laboratories in Murray Hill, New Jersey.

Andrew S. Jordan received his Ph.D. in metallurgy from the University of Pennsylvania. He is currently Supervisor of the Heterostructure Materials Group at AT&T Bell Laboratories in Murray Hill, New Jersey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

VonNeida, A.R., Jordan, A.S. Reducing Dislocations in GaAs and InP. JOM 38, 35–40 (1986). https://doi.org/10.1007/BF03257816

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257816

Keywords

Navigation