Skip to main content
Log in

Crack Growth Resistance

  • Material
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Materials design and development for resistance to stress corrosion cracking depends upon an understanding of the crack-growth mechanism. The factors controlling stress corrosion cracking may be classified as environmental, material and mechanical. This overview examines the state of the art in stress corrosion cracking and reviews such considerations as phenomenological influences, material chemistry and microstructure, mechanical factors. Also explored are materials design and future considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Parkins, Br. Corrosion J., Vol. 14 (1979), p. 5.

    Google Scholar 

  2. C. Edeleneau and A.J. Forty, Phil. Mag., Vol. 46 (1960), p. 521.

    Google Scholar 

  3. J.A. Beavers and E.N. Pugh, Metall. Trans. A., Vol. 11 (1980), p. 809.

    Article  Google Scholar 

  4. M.T. Hahn and E.N. Pugh, Corrosion, Vol. 36 (1980), p. 380.

    Google Scholar 

  5. E.N. Pugh, Atomistics of Fracture, R.M. Latanision and J.R. Pickens, Eds., Plenum Press, New York, 1983, p. 997.

  6. R.C. Newman and K. Sieradzki, Chemistry and Physics of Fracture, R.M. Latanision and R.H. Jones, Eds., Martinus Nijhoff Publishers, Dordrecht, 1986, p. 597.

  7. S.M. Bruemmer, L.A. Chariot and D.G. Atteridge, “Evaluation of Welded and Repair-Welded Stainless Steel for Light Water Reactor (LWR) Service,” NUREG/CR = 3918, December 1984.

    Google Scholar 

  8. L. Long and H. Uhlig, J. Electrochem. Soc., Vol. 112 (1964), p. 1965.

    Google Scholar 

  9. J. Kuppa, H. Erhart and H. Grabke, Corr. Sci., Vol. 21 (1981), p. 227.

    Article  Google Scholar 

  10. N. Bandyopadhyay, R.C. Newman and K. Sieradzki, Proc. 9th International Congress on Metallic Corrosion, Toronto, Canada, 1984.

    Google Scholar 

  11. A. Joshi and D.J. Stein, Corrosion, Vol. 28 (1972), p. 321.

    Google Scholar 

  12. R.H. Jones, Proc. 2nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, American Nuclear Society, 1985, p. 173.

    Google Scholar 

  13. R.W. Staehle, Corrosion, Vol. 26 (1970), p. 451.

    Google Scholar 

  14. P.R. Swann, Corrosion, Vol. 19 (1963), p. 3.

    Google Scholar 

  15. R.H. Jones, M.J. Danielson and D.R. Baer, Proc. 20th National Fracture Mechanics Symposium, Lehigh University, June 232_25, ASTM, 1987.

    Google Scholar 

  16. F.P. Ford, “Mechanisms of Environmental Cracking in Systems Peculiar to the Power Generation Industry,” EPRI NP-2589, Electric Power Research Institute, Palo Alto, California, 1982.

    Google Scholar 

  17. J.M. Silcock and P.R. Swann, Environment-Sensitive Fracture of Engineering Materials, Z.A. Foroulis, Ed., TMS-AIME, Warrendale, PA, 1979, p. 133.

  18. S.P. Lynch, J. Mater. Sci., Vol. 20 (1985), p. 3329.

    Article  Google Scholar 

  19. J.R. Crum and R.C. Scarberry, J. Mater. Energy Systems, Vol. 4 (1982), p. 125.

    Article  Google Scholar 

  20. A.I. Asphahani and H.M. Tawainey, Corrosion and Corrosion Protection, R.P. Frankenthal and F. Mansfield, Eds., The Electrochemical Society, Inc., Pennington, NJ, 1981, p. 154.

  21. A. Turnbull and J.G.N. Thomas, J. Electrochem. Soc., Vol. 129 (1982), pp. 1412–1422.

    Article  Google Scholar 

  22. R.P. Gangloff and A. Turnbull, Modeling Environmental Effects on Crack Growth Processes, R.H. Jones and W.W. Gerberich, Eds., TMS, Warrendale, PA, 1986, p. 55.

  23. M.J. Danielson, C. Oster and R.H. Jones, J. Electrochemical Society, 1987, in press.

    Google Scholar 

  24. F.P. Ford and P.L. Andresen, Proc. 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, 1987, TMS, Warrendale, PA, in press.

    Google Scholar 

  25. R.N. Parkins, Proc. Mechanics and Physics of Crack Growth: Application to Life Prediction, Mater. Science Engineering, in press.

  26. J.T. Evans, Acta Metall., Vol. 34 (1986), p. 2075.

    Article  Google Scholar 

Download references

Authors

Additional information

Russell H. Jones received his Ph.D. in metallurgy from the University of California, Berkeley, in 1971. He is currently technical leader of the Metals Research Group of the Materials Sciences Department of Battelle-Northwest in Richland, Washington. Dr. Jones is also a member of TMS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.H. Crack Growth Resistance. JOM 39, 32–39 (1987). https://doi.org/10.1007/BF03257569

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257569

Keywords

Navigation