Skip to main content
Log in

Bioequivalence Behind the Scenes

  • Practical Application
  • Published:
Pharmaceutical Development and Regulation

Abstract

This paper focuses on some unresolved issues in bioequivalence. In these cases, intrinsic difficulties not clearly considered in EU and US FDA operating guidelines are involved. Careful attention to these issues and wide experience is required for tailoring specific bioequivalence study protocols. The aim is to reach a bioequivalence or bioinequivalence conclusion on the basis of test versus reference performance, avoiding less definite, borderline conclusions attributable to intrinsic difficulties in the specific study. In discussing these unresolved issues, the author suggests potential solutions, where possible, on the basis of personal experience and specific bibliographic references.

The difference in titer between test and reference would normally be in the range of 95–105%, but in some cases it would fall within the expanded range of 90–120%. This would call for a titer normalization in establishing bioequivalence. A long elimination half-life (t1/2) [e.g. 50 days with amiodarone] calls for decision making about study design, namely crossover or parallel group design, the latter design being more adequate for drugs cleared with a t1/2 >10 days. Ethical problems concerning drug administration in healthy individuals (e.g. cytostatic agents in single dose, and other drugs in a repeated-dose regimen) is another issue. Drugs that produce unacceptable side effects in a repeated-dose regimen should be studied in healthy volunteers only in single dose. Drugs characterized by high variability require a high number of participants in the trial. Endogenous substances, most of which are eliminated faster than they are absorbed, have plasma concentration-time behavior not predictive of bioavailability. When the endogenous substance is cleared via urine, cumulative urinary excretion is a better evaluation parameter than area under the plasma concentration curve. In other cases a repeated dose regimen to steady state can allow post-dose concentration without baseline subtraction to be considered in assessing bioequivalence. Drugs producing one or more active metabolite(s) raise different opinions on whether bioequivalence should be assessed for the drug, metabolite(s) or both. All active moiety, namely parent drug and metabolite(s) should be assayed. Bioequivalence, however, should be assessed on only one substance, preferably the parent drug. In the presence of a prevalent active metabolite, this metabolite should be preferred in assessing bioequivalence.

Insufficient sensitivity of the bioassay often compels an alternative solution, such as working in steady state or assaying the compound in urine. Polymorphic metabolism calls for a preliminary classification of volunteers in order to exclude poor metabolizers from bioequivalence studies of repeated-dose regimens. Topical application of drugs for topical effect calls for a therapeutic bioequivalence; this is because circulating concentrations are not an expression of activity, but only of safety. When there are several strengths of a given drug on the market, the replicator can profit from a waiver allowing only one strength to be checked when some conditions hold. Reversible metabolites should be considered active metabolites. This is because they can revert into the parent compound. Reversibility of metabolites is very common with endogenous substances, but it is also present with several exogenous substances.

The approaches selected to solve bioequivalence problems must not conflict with US FDA and EU operating guidelines, which, however, in some instances do not overlap. This would mean that it is mandatory to operate on a case-by-case basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Fig. 4
Table III

Similar content being viewed by others

References

  1. Marzo A. Open questions on bioequivalence: some problems and some solutions. Pharmacol Res 1999; 40: 357–68

    Article  PubMed  CAS  Google Scholar 

  2. EMEA. Note for guidance on the investigation of bioavailability and bioequivalence. CPMP/EWP/QWP/1401/98, 2001 Jul 26 [online]. Available from URL: http://www.emea.eu.int/pdfs/human/ewp/140198en.pdf [Accessed 2003 Sep 9]

  3. US Dept of Health and Human Services. Guidance for industry. Bioavailability and bioequivalence studies for orally administered drug products: general conditions — Draft Guidance distributed by US Dept of Health and Human Services, FDA, Center for Drug Evaluation and Research, 2002 Jul 11 [online]. Available from URL: http://www.fda.gov/OHRMS/DOCKETS/98fr/071102e.pdf [Accessed 2003 Sep 9]

  4. Latini R, Tognoni G, Kates RE. Clinical pharmacokinetics of amiodarone. Clin Pharmacokinet 1984; 9: 136–56

    Article  PubMed  CAS  Google Scholar 

  5. White NJ. Clinical pharmacokinetics of antimalarial drugs. Clin Pharmacokinet 1985; 10: 187–215

    Article  PubMed  CAS  Google Scholar 

  6. Marzo A. Crossover design in tamoxifen bioequivalence: a borderline situation. J Pharm Pharmacol 1998; 50: 1433–4

    Article  PubMed  CAS  Google Scholar 

  7. Anthony LB. Long-acting formulations of somatostatin analogues. Ital J Gastroenterol Hepatol 1999; 31Suppl. 2: S216–8

    PubMed  Google Scholar 

  8. Marzo A, Ceppi Monti N, Vuksic D. Experimental, extrapolated and truncated AUC in bioequivalence trials. Eur J Clin Pharmacol 1999; 55: 627–31

    Article  PubMed  CAS  Google Scholar 

  9. Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine 10,11-epoxide. Clin Pharmacokinet 1986; 11: 177–98

    Article  PubMed  CAS  Google Scholar 

  10. Osborne R, Joel S, Trew D, et al. The morphine and metabolite behaviour after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990; 47: 12–9

    Article  PubMed  CAS  Google Scholar 

  11. Wingard Jr LB, O’Reilly RA, Levy G. Pharmacokinetics of warfarin enantiomers: a search for intrasubject correlations. Clin Pharmacol Ther 1978; 23: 212–7

    PubMed  CAS  Google Scholar 

  12. Hignite C, Uetrecht J, Tschanz C, et al. Kinetics of R and S warfarin enantiomers. Clin Pharmacol Ther 1980; 28: 99–105

    Article  PubMed  CAS  Google Scholar 

  13. Palareti G, Legnani C. Warfarin withdrawal: pharmacokinetic/pharmacodynamic considerations. Clin Pharmacokinet 1996; 30: 300–13

    Article  PubMed  CAS  Google Scholar 

  14. Bennett WM, Pulliam JP. Cyclosporine nephrotoxicity. Ann Intern Med 1983; 99: 851–4

    PubMed  CAS  Google Scholar 

  15. Jacobo E, Schmidt JD, Weinstein SH, et al. Comparison of flutamide (SCH-13521) and diethylstilbestrol in untreated advanced prostatic cancer. Urology 1976; 8: 231–33

    Article  PubMed  CAS  Google Scholar 

  16. Pokorny R, Finkel MJ, Robinson WT. Normal volunteers should not be used for bioavailability or bioequivalence studies of clozapine [letter]. Pharm Res 1994; 11: 1221

    Article  PubMed  CAS  Google Scholar 

  17. Cutler NR. Pharmacokinetic studies of antipsychotics in healthy volunteers versus patients. J Clin Psychiatry 2001; 62Suppl. 5: 10–3

    PubMed  CAS  Google Scholar 

  18. Meyer MC. United States food and drug administration requirements for approval of generic drug products. J Clin Psychiatry 2001; 62Suppl. 5: 4–9

    PubMed  CAS  Google Scholar 

  19. Marzo A. Clinical pharmacokinetic registration file for NDA and ANDA procedures. Pharmacol Res 1997; 36: 425–50

    Article  PubMed  CAS  Google Scholar 

  20. Marzo A, Balant LP. Bioequivalence: an updated reappraisal addressed to applications of interchangeable multi-source pharmaceutical products. Arzneimittel Forschung 1995; 45: 109–15

    PubMed  CAS  Google Scholar 

  21. Patnaik RN, Lesko LJ, Chen ML, et al. Individual bioequivalence: new concepts in the statistical assessment of bioequivalence metrics. Clin Pharmacokinet 1997; 33: 1–6

    Article  PubMed  CAS  Google Scholar 

  22. Marzo A, Rescigno A. Pharmacokinetics of endogenous substances: some problems and some solutions. Eur J Drug Metab Pharmacokinet 1993; 18: 77–88

    Article  PubMed  CAS  Google Scholar 

  23. Marzo A, Vuksic D, Crivelli F. Bioequivalence of endogenous substances facing homeostatic equilibria: an example with potassium. Pharmacol Res 2000; 42: 523–5

    Article  PubMed  CAS  Google Scholar 

  24. Cerny I, Dighe SV. Guidance for in vivo bioequivalence study for slow-release potassium chloride tablets/capsules. Rockville (MD): FDA Center for drug evaluation and research, 1987 May 15

    Google Scholar 

  25. Dong BJ, Hauck WW, Gambertoglio JG, et al. Bioequivalence of generic and brand-name levothyroxine products in the treatment of hypothyroidism. JAMA 1997; 277: 1205–13

    Article  PubMed  CAS  Google Scholar 

  26. Cerutti R, Rivolta G, Cavalieri L, et al. Bioequivalence of levothyroxine tablets administered in target population in steady state. Pharmacol Res 1999; 39: 193–201

    Article  PubMed  CAS  Google Scholar 

  27. Reginster JY, Denis D, Bartsch V, et al. Acute biochemical variation induced by four different calcium salts in healthy male volunteers. Osteoporos Int 1993; 3: 271–5

    Article  PubMed  CAS  Google Scholar 

  28. Scotti A, Bianchini C, Abbiati G, et al. Absorption of calcium administered alone or in fixed combination with vitamin D to healthy volunteers. Arzneimittel Forschung 2001; 51: 493–500

    PubMed  CAS  Google Scholar 

  29. Marzo A, Dal Bo L, Mazzucchelli P, et al. Pharmacokinetic and pharmacodynamic comparative study of zofenopril and enalapril in healthy volunteers. Arzneimittel Forschung 2002; 52: 233–42

    PubMed  CAS  Google Scholar 

  30. Schulz M, Schmoldt A, Donn F, et al. The pharmacokinetics of flutamide and its major metabolites after a single oral dose and during chronic treatment. Eur J Clin Pharmacol 1988; 34: 633–6

    Article  PubMed  CAS  Google Scholar 

  31. Walter-Sack I, de Vries JX, Kreiner C, et al. Bioequivalence of allopurinol preparations: to be assayed by parent drug or the active metabolite? Clin Invest 1993; 71: 240–6

    Article  CAS  Google Scholar 

  32. Garteiz DA, Hook RH, Walker BJ, et al. Pharmacokinetics and biotransformation studies of terfenadine in man. Arzneimittel Forschung 1982; 32: 1185–90

    PubMed  CAS  Google Scholar 

  33. Bochner F, Lloyd JV. Aspirin for myocardial infarction: clinical pharmacokinetic considerations. Clin Pharmacokinet 1995; 28: 433–8

    Article  PubMed  CAS  Google Scholar 

  34. Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide: a potent antagonist of morphine analgesia. Life Sci 1990; 47: 579–85

    Article  PubMed  CAS  Google Scholar 

  35. Häring N, Salama Z, Jaeger H. Triple stage quadrupole spectrometric determination of bromocriptine in human plasma with negative ion chemical ionization. Arzneimittel Forschung 1988; 38: 1529–32

    PubMed  Google Scholar 

  36. Borgström L, Nyberg L, Jönsson S, et al. Pharmacokinetic evaluation in man of terbutaline given as separate enantiomers and as racemate. Br J Clin Pharmacol 1989; 27: 49–56

    Article  PubMed  Google Scholar 

  37. Lecaillon JB, Kaiser G, Palmisano M, et al. Pharmacokinetics and tolerability of formoterol in healthy volunteers after a single high dose of Foradil dry powder inhalation via aerolizer™. Eur J Clin Pharmacol 1999; 55: 131–8

    Article  PubMed  CAS  Google Scholar 

  38. Altamura AC, Moro AR, Percudani M. Clinical Trials of fluoxetine. Clin Pharmacokinet 1994; 26: 201–14

    Article  PubMed  CAS  Google Scholar 

  39. Porras AG, Holland SD, Gertz BJ. Pharmacokinetics of alendronate. Clin Pharmacokinet 1999; 36: 315–28

    Article  PubMed  CAS  Google Scholar 

  40. Marzo A, Balant LP. Investigation of xenobiotic metabolism by CYP2D6 and CYP2C19: importance of enantioselective analytical methods. J Chromatogr B 1996; 678: 73–92

    Article  CAS  Google Scholar 

  41. Frye RF, Matzke GR, Adedoyin A, et al. Validation of the five-drug ‘Pittsburgh cocktail’ approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 1997; 62: 365–76

    Article  PubMed  CAS  Google Scholar 

  42. Streetman DS, Bleakley JF, Kim JS, et al. Combined phenotyping assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the ‘Cooperstown cocktail’. Clin Pharmacol Ther 2000; 68: 375–83

    Article  PubMed  CAS  Google Scholar 

  43. Kenworthy KE, Bloomer JC, Clarke SE, et al. CYP3A4 drug interactions: correlation of 10 in vitro probe substances. Br J Clin Pharmacol 1999; 48: 716–27

    Article  PubMed  CAS  Google Scholar 

  44. Müller M, Mascher H, Kikuta C, et al. Diclofenac concentrations in defined tissue layers after topical administration. Clin Pharmacol Ther 1997; 62: 293–9

    Article  PubMed  Google Scholar 

  45. Rowbotham MC, Davies PS, Fields HL. Topical lidocaine gel relieves postherpetic neuralgia. Ann Neurol 1995; 37: 246–53

    Article  PubMed  CAS  Google Scholar 

  46. Sengupta S, Velpandian T, Kabir SR, et al. Analgesic efficacy and pharmacokinetics of topical nimesulide gel in healthy human volunteers: double-blind comparison with piroxicam, diclofenac and placebo. Eur J Clin Pharmacol 1998; 54: 541–7

    Article  PubMed  CAS  Google Scholar 

  47. Shah VP, Flynn GL, Yacobi A, et al. Bioequivalence of topical dermatological dosage forms: methods of evaluation of bioequivalence. Pharm Res 1998; 15: 167–71

    Article  PubMed  CAS  Google Scholar 

  48. Singh GJ, Adams WP, Lesko LJ, et al. Development of in vivo bioequivalence methodology for dermatologic corticosteroids based on pharmacodynamic modeling. Clin Pharmacol Ther 1999; 66: 346–57

    Article  PubMed  CAS  Google Scholar 

  49. EurdaLex. EU note for guidance: investigation of chiral active substances. Available from URL: http://pharmacos.eudra.org/F2/eudralex/vol-3/pdfs-en/3cc29aen.pdf [Accessed 2003 Sep 9]

  50. Marzo A, Heftmann E. Enantioselective analytical methods in pharmacokinetics with specific reference to genetic polymorphic metabolism. J Biochem Biophys Methods 2002; 54: 57–70

    Article  PubMed  CAS  Google Scholar 

  51. Marzo A. Incoming guidelines on chirality: a challenge for pharmacokinetics in drug development. Arzneimittel Forschung 1994; 44: 791–3

    PubMed  CAS  Google Scholar 

  52. Runkel R, Chaplin MD, Sevelius H, et al. Pharmacokinetics of naproxen overdoses. Clin Pharmacol Ther 1976; 20: 269–77

    PubMed  CAS  Google Scholar 

  53. Marzo A. Toxicokinetics of endogenous substances: a neglected issue. Azneimittel Forshung 1996; 46: 1–10

    CAS  Google Scholar 

  54. Ho PC, Bourne DW, Triggs EJ, et al. Pharmacokinetics of canrenone and metabolites after base hydrolysis following single and multiple dose and administration of spironolactone. Eur J Clin Pharmacol 1984; 27: 441–6

    Article  PubMed  CAS  Google Scholar 

  55. Kearney AS, Crawford LF, Mehta SC, et al. The interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm Res 1993; 10: 1461–5

    Article  PubMed  CAS  Google Scholar 

  56. Gibson TP, Dobrinska MR, Lin JH, et al. Biotransformation of sulindac in endstage renal disease. Clin Pharmacol Ther 1987; 42: 82–8

    Article  PubMed  CAS  Google Scholar 

  57. Woosley RL, Wood AJ, Roden DM. Drug therapy: encainide. N Engl J Med 1988; 318: 1107–15

    Article  PubMed  CAS  Google Scholar 

  58. Froemming JS, Lam YW, Jann MW, et al. Pharmacokinetics of haloperidol. Clin Pharmacokinet 1989; 17: 396–423

    Article  PubMed  CAS  Google Scholar 

  59. Chabner BA, Allegra CJ, Curt GA, et al. Antineoplastic agents. In: Hardman GJ, Limbird LE, Molinoff PB, et al., editors. The pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 1233–87

    Google Scholar 

  60. Jemal M, Ouyang Z, Chen BC, et al. Quantitation of the acid and lactone forms of atorvastatin and its biotransformation products in human serum by high-performance liquid chromatography with electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 1999; 13: 1003–15

    Article  PubMed  CAS  Google Scholar 

  61. Bullen WW, Miller RA, Hayes RN. Development and validation of a high-performance liquid chromatography tandem mass spectrometry assay for atorvastatin, and para-hydroxy atorvastatin in human, dog, and rat plasma. J Am Soc Mass Spectrom 1999; 10: 55–66

    Article  PubMed  CAS  Google Scholar 

  62. Lennernäs H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors: similarities and differences. Clin Pharmacokinet 1997; 32: 403–25

    Article  PubMed  Google Scholar 

  63. EurdaLex. Note for guidance — investigation of bioavailability and bioequivalence: CPMP working party on efficiency of medicinal products [online]. Available from URL: http://pharmacos.eudra.org/F2/eudralex/vol-3/pdfs-en/3cc29aen.-pdf [Accessed 2003 Sep 9]

  64. FDA. In vivo bioequivalence guidances: general information. US Pharmacopoeia XXIII 1998; Suppl. 8: 4382–426

    Google Scholar 

  65. ERMA. ICH topic E6: note for guidance on good clinical practice CPMP/ICH/135/ 95 [online]. Available from URL: http://www.eortc.be/Services/Doc/ICH_GCP.pdf [Accessed 2003 Sep 9]

  66. World pharmaceutical news: parliamentary panel supports optionality. Scrip 2002 Oct 9; 2788: 3

    Google Scholar 

Download references

Acknowledgements

The author has provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzo, A. Bioequivalence Behind the Scenes. Pharm Dev Regul 1, 179–189 (2003). https://doi.org/10.1007/BF03257377

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257377

Keywords

Navigation