Skip to main content
Log in

β2-Agonist Eutomers

A Rational Option for the Treatment of Asthma?

  • Current Opinion
  • Published:
American Journal of Respiratory Medicine

Abstract

β2-adrenoceptor agonists (β2-agonists) such as albuterol (salbutamol) and terbutaline and their long-acting analogs salmeterol and formoterol are widely used as bronchodilators in the treatment of asthma. They are chiral drugs historically marketed as racemic mixtures of an active (eutomer) and essentially inactive (distomer) stereoisomer. Despite their obvious therapeutic value and widespread use, β2-agonists have been implicated, somewhat controversially, in causing an increase in asthma mortality and a deterioration of asthma control by a mechanism that remains elusive. Inherent toxicity of the distomers has been widely touted as an explanation and has given rise to pressure for the replacement of the racemates with pure eutomer formulations (the so-called chiral or racemic switch). This has culminated in the recent introduction into clinical practice of the single active stereoisomer of albuterol (levalbuterol) and the promise of other pure β2-agonist eutomer formulations to follow. This article examines the evidence on which these chiral switches are based.

Clinical studies designed to reveal negative effects of β2-agonists have searched for reductions in lung function, increases in airway responsiveness to bronchoconstrictor mediators and worsening of asthma control. Crossover studies administering the pure stereoisomers and racemate of albuterol have not shown a clear superiority of the pure eutomer formulation over the racemate in terms of either bronchial hyperresponsiveness, tachyphylaxis to bronchoprotective effects or improvements in lung function. Clinical toxicity of β2-agonist distomers on any aspect of asthmatic lung function has also not been demonstrated in the relatively short-term inhalational studies (single dose or repeated dose studies <1 week) that have been carried out.

In animal studies, the administration of β2-agonist racemates and distomers has been shown to enhance bronchial hyperresponsiveness but only in ovalbumin-sensitized animals where the relevance to humans is questionable.

The pharmacokinetics and metabolism of β2-agonist stereoisomers appear to be essentially similar whether administered as single stereoisomers or as racemates. Levalbuterol may be slightly more potent than an equivalent dose given as racemate, but there is some evidence that it forms a small amount of the distomer in vivo which detracts somewhat from its purported benefits over use of the racemate.

Whilst there remains a clear need for studies of longer duration with sensitive clinical endpoints to evaluate the benefits of β2-agonist eutomers and to investigate distomer toxicity, the chiral switch for β2-agonists in general, and for albuterol in particular, does not appear to be justified on the basis of the evidence available to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brittain RT, Farmer JB, Marshall RJ. Some observations on the β-adrenoceptor agonist properties of the isomers of salbutamol. Br J Pharmacol 1973; 48: 144–7

    Article  PubMed  CAS  Google Scholar 

  2. Patil PN, Militer DD, Trendelenberg U. Molecular geometry and adrenergic drug activity. Pharmacol Rev 1975; 26: 323–92

    Google Scholar 

  3. Ariëns EJ. Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 1984; 26: 663–8

    Article  PubMed  Google Scholar 

  4. Cotzias GC, Papavasiliow PS, Gellene R. Modification of Parkinsonism: chronic treatment with L-dopa. N Engl J Med 1969; 280: 337–45

    Article  PubMed  CAS  Google Scholar 

  5. Owen MD, Dean LS. Ropivacaine. Expert Opin Pharmacother 2000; 1: 325–36

    Article  PubMed  CAS  Google Scholar 

  6. Scott AK. Stereoisomers and drug toxicity. Drug Saf 1993; 8: 149–59

    Article  PubMed  CAS  Google Scholar 

  7. Conolly ME, Davies DS, Dollery CT, et al. Resistance to β-adrenoceptor stimulants (a possible explanation for the rise in asthma deaths). Br J Pharmacol 1971; 43: 389–402

    PubMed  CAS  Google Scholar 

  8. Speizer FE, Doll R, Heaf P, et al. Investigation into use of drugs preceding death from asthma. BMJ 1968; 1: 339–43

    Article  PubMed  CAS  Google Scholar 

  9. Stolley P, Schinnar R. Association between asthma mortality and isoproterenol aerosols: a review. Prev Med 1978; 7: 519–38

    Article  PubMed  CAS  Google Scholar 

  10. Crane J, Flatt A, Jackson R, et al. Prescribed fenoterol and death from asthma in New Zealand, 1981–1983: case-control study. Lancet 1989; 8644: 917–22

    Article  Google Scholar 

  11. Pearce N, Granger J, Atkinson M, et al. Case control study of prescribed fenoterol and death from asthma in New Zealand, 1977–81. Thorax 1990; 45: 170–5

    Article  PubMed  CAS  Google Scholar 

  12. Spitzer WO, Suissa S, Ernst P, et al. The use of beta-agonists and the risk of death or near death from asthma. N Engl J Med 1992; 326: 501–6

    Article  PubMed  CAS  Google Scholar 

  13. Suissa S, Ernst P, Boivin JF, et al. A cohort analysis of excess mortality in asthma and the use of inhaled beta-agonists. Am J Respir Crit Care Med 1994; 149: 604–10

    PubMed  CAS  Google Scholar 

  14. Barrett TE, Strom BL. Inhaled beta-adrenergic receptor agonists in asthma: more harm than good? Am J Respir Crit Care Med 1995; 151: 574–7

    PubMed  CAS  Google Scholar 

  15. McFadden ER. Perspectives in β2-agonist therapy: Vox clamantis in deserto vel lux in tenebris? J Allergy Clin Immunol 1995; 9: 641–51

    Article  Google Scholar 

  16. Sears MR, Taylor DR. Regular beta-agonist therapy: the quality of the evidence [letter]. Eur Respir J 1992; 5: 896–7

    PubMed  CAS  Google Scholar 

  17. Pearlman DS, Chervinsky P, LaForce C, et al. A comparison of salmeterol with albuterol in the treatment of mild-to-moderate asthma. N Engl J Med 1992; 327: 1420–5

    Article  PubMed  CAS  Google Scholar 

  18. Taylor DR, Town GI, Herbison GP, et al. Asthma control during long-term treatment with regular inhaled salbutamol and salmeterol. Thorax 1998; 53: 744–52

    Article  PubMed  CAS  Google Scholar 

  19. Pauwels RA, Lofdahl CG, Postma DS, et al. Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N Engl J Med 1997; 337: 1405–11

    Article  PubMed  CAS  Google Scholar 

  20. Perrin-Fayolle M. Salbutamol in the treatment of asthma [letter]. Lancet 1995; 346: 1101

    Article  PubMed  CAS  Google Scholar 

  21. Perrin-Fayolle M, Blum PS, Morley J, et al. Differential responses of asthmatic airways to enantiomers of albuterol: implications for clinical treatment of asthma. Clin Rev Allergy Immunol 1996; 14: 139–47

    Article  PubMed  CAS  Google Scholar 

  22. Cockcroft DW, Swystun VA. Effect of single doses of S-salbutamol, R-salbutamol, racemic salbutamol, and placebo on the airway response to methacholine. Thorax 1997; 52: 845–8

    Article  PubMed  CAS  Google Scholar 

  23. Lötvall J, Palmqvist M, Arvidsson P, et al. The therapeutic ratio of R-albuterol is comparable with that of RS-albuterol in asthmatic patients. J Allergy Clin Immunol 2001; 108: 726–31

    Article  PubMed  Google Scholar 

  24. Ramsay CM, Cowan J, Flannery E, et al. Bronchoprotective and bronchodilator effects of single doses of (S)-salbutamol, (R)-salbutamol and racemic salbutamol in patients with bronchial asthma. Eur J Clin Pharmacol 1999; 55: 353–9

    Article  PubMed  CAS  Google Scholar 

  25. Cockcroft DW, Davis BE, Swystun VA, et al. Tolerance to the bronchoprotective effect of beta2-agonists: comparison of the enantiomers of salbutamol with racemic salbutamol and placebo. J Allergy Clin Immunol 1999; 103: 1049–53

    Article  PubMed  CAS  Google Scholar 

  26. Sanjar S, Kristersson A, Mazzoni L, et al. Increased airway reactivity in the guinea-pig follows exposure to intravenous isoprenaline. J Physiol 1990; 425: 43–54

    PubMed  CAS  Google Scholar 

  27. Morley J, Chapman ID, Foster A, et al. Effects of (+) and racemic salbutamol on airway responses in the guinea-pig. Br J Pharmacol 1991; 104: 295P

    Google Scholar 

  28. Chapman I, Mazzoni L, Morley J. An anomalous effect of salbutamol in sensitised guinea-pigs [abstract]. Br J Pharmacol 1990; 99: 66P

    Google Scholar 

  29. Galland BC, Blackman JG. Enhancement of airway reactivity to histamine by isoprenaline and related β-adrenoceptor agonists in the guinea-pig. Br J Pharmacol 1993; 108: 1016–23

    Article  PubMed  CAS  Google Scholar 

  30. Costello RW, Jacoby DB, Fryer AD. Pulmonary neuronal M2 muscarinic receptor function in asthma and animal models of hyperreactivity. Thorax 1998; 53: 613–6

    Article  PubMed  CAS  Google Scholar 

  31. Trofast J, Osterberg K, Kallstrom BL, et al. Steric aspects of agonism and antagonism at beta-adrenoceptors: synthesis of and pharmacological experiments with the enantiomers of formoterol and their diastereomers. Chirality 1991; 3: 443–50

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt D, Kallstrom BL, Waldeck B, et al. The effect of the enantiomers of formoterol on inherent and induced tone in guinea-pig trachea and human bronchus. Naunyn Schmiedebergs Arch Pharmacol 2000; 361: 405–9

    Article  PubMed  CAS  Google Scholar 

  33. Johansson F, Rydberg I, Aberg G, et al. Effects of albuterol enantiomers on in vitro bronchial reactivity. Clin Rev Allergy Immunol 1996; 14: 57–64

    Article  PubMed  CAS  Google Scholar 

  34. Templeton AG, Chapman ID, Chilvers ER, et al. Effects of S-salbutamol on human isolated bronchus. Pulm Pharmacol Ther 1998; 11: 1–6

    Article  PubMed  CAS  Google Scholar 

  35. Kallstrom BL, Sjoberg J, Waldeck B. Steric aspects of formoterol and terbutaline: is there an adverse effect of the distomer on airway smooth muscle function? Chirality 1996; 8: 567–73

    Article  PubMed  CAS  Google Scholar 

  36. Mitra S, Ugur M, Ugur O, et al. (S)-Albuterol increases intracellular free calcium by muscarinic receptor activation and a phospholipase C-dependent mechanism in airway smooth muscle. Mol Pharmacol 1998; 53: 347–54

    PubMed  CAS  Google Scholar 

  37. Cho SH, Hartleroad JY, Oh CK. (S)-Albuterol increases the production of histamine and IL-4 in mast cells. Int Arch Allergy Immunol 2001; 124: 478–84

    Article  PubMed  CAS  Google Scholar 

  38. Lipworth BJ, Struthers AD, McDevitt DG. Tachyphylaxis to systemic but not to airway responses during prolonged therapy with high dose inhaled salbutamol in asthmatics. Am Rev Respir Dis 1989; 140: 586–92

    PubMed  CAS  Google Scholar 

  39. Hancox RJ, Aldridge RE, Cowan JO, et al. Tolerance to beta-agonists during acute bronchoconstriction. Eur Respir J 1999; 14: 283–7

    Article  PubMed  CAS  Google Scholar 

  40. Hawkins CJ, Klease GT. Relative potency of (−)- and (±)-salbutamol on guinea pig tracheal tissue. J Med Chem 1973; 16: 856–7

    Article  PubMed  CAS  Google Scholar 

  41. Hartley D, Middlemiss D. Absolute configuration of the optical isomers of salbutamol. J Med Chem 1971; 14: 995–6

    Article  PubMed  CAS  Google Scholar 

  42. Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al. Pharmacokinetics and pharmacodynamics of cumulative single doses of inhaled salbutamol enantiomers in asthmatic subjects. Pulm Pharmacol Ther 1999; 12: 353–62

    Article  PubMed  CAS  Google Scholar 

  43. Nelson HS, Bensch G, Pleskow WW, et al. Improved bronchodilation with levalbuterol compared with racemic albuterol in patients with asthma. J Allergy Clin Immunol 1998; 102: 943–52

    Article  PubMed  CAS  Google Scholar 

  44. Gawchik SM, Saccar CL, Noonan M, et al. The safety and efficacy of nebulized levalbuterol compared with racemic albuterol and placebo in the treatment of asthma in pediatric patients. J Allergy Clin Immunol 1999; 103: 615–21

    Article  PubMed  CAS  Google Scholar 

  45. Handley DA, Tinkelman D, Noonan M, et al. Dose-response evaluation of levalbuterol versus racemic albuterol in patients with asthma. J Asthma 2000; 37: 319–27

    Article  PubMed  CAS  Google Scholar 

  46. Black P. Levosalbutamol. Biodrugs 1999; 11: 439–40

    Article  PubMed  CAS  Google Scholar 

  47. Ahrens R, Weinberger M. Levalbuterol and racemic albuterol: are there therapeutic differences? J Allergy Clin Immunol 2001; 108: 681–4

    Article  PubMed  CAS  Google Scholar 

  48. Busse WW, Greos L, Vaickus L. Lower doses of Xenoprex are as effective as racemic albuterol in the prevention of exercise-induced asthma (EIB) [abstract]. J Allergy Clin Immunol 1999; 103: S136

    Article  Google Scholar 

  49. Israel E, Hong C, Claus R, et al. Levalbuterol is effective in the prevention of cold air induced bronchospasm and does not induce tachyphylaxis in the degree of bronchoprotection [abstract]. J Allergy Clin Immunol 2000; 105: S22

    Article  Google Scholar 

  50. Boulton DW, Fawcett JP. Pharmacokinetics and pharmacodynamics of single oral doses of albuterol and its enantiomers in humans. Clin Pharmacol Ther 1997; 62: 138–44

    PubMed  CAS  Google Scholar 

  51. Borgström L, Nyberg L, Jonsson S, et al. Pharmacokinetic evaluation in man of terbutaline given as separate enantiomers and as the racemate. Br J Clin Pharmacol 1989; 27: 49–56

    Article  PubMed  Google Scholar 

  52. Borgström L, Kennedy BM, Nilsson B, et al. Relative duodenal absorption of the two enantiomers of terbutaline after duodenal administration. Eur J Clin Pharmacol 1990; 38: 621–3

    Article  PubMed  Google Scholar 

  53. Boulton DW, Fawcett JP. Enantioselective disposition of albuterol in humans. Clin Rev Allergy Immunol 1996; 14: 115–38

    Article  PubMed  CAS  Google Scholar 

  54. Fawcett JP, Boulton DW. Enantioselective disposition of β2-agonists in humans. In: Costello JF, editor. Sympathomimetic enantiomers in the treatment of asthma. Carnforth: The Parthenon Publishing Group Inc, 1997: 101–122

    Google Scholar 

  55. Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al. Pharmacokinetics and pharmacodynamic characteristics and safety of inhaled albuterol enantiomers in healthy volunteers. J Clin Pharmacol 1998; 38: 1096–106

    PubMed  CAS  Google Scholar 

  56. Lecaillon JB, Kaiser G, Palmisano M, et al. Pharmacokinetics and tolerability of formoterol in healthy volunteers after a single high dose of Foradil dry powder inhalation via aerolizer. Eur J Clin Pharmacol 1999; 55: 131–8

    Article  PubMed  CAS  Google Scholar 

  57. Boulton DW, Fawcett JP. The pharmacokinetics of levosalbutamol: what are the clinical implications? Clin Pharmacokinet 2001; 40: 23–40

    Article  PubMed  CAS  Google Scholar 

  58. Ward JK, Dow J, Dallow N, et al. Enantiomeric disposition of inhaled, intravenous and oral racemic-salbutamol in man: no evidence of enantioselective lung metabolism. Br J Clin Pharmacol 2000; 49: 15–22

    Article  PubMed  CAS  Google Scholar 

  59. Walle T, Walle UK. Stereoselective sulphate conjugation of racemic terbutaline by human liver cytosol. Br J Clin Pharmacol 1990; 30: 127–33

    Article  PubMed  CAS  Google Scholar 

  60. Walle T, Walle UK. Stereoselective sulphate conjugation of 4-hydroxypropranolol and terbutaline by the human liver phenolsulfotransferases. Drug Metab Dispos 1992; 20: 333–6

    PubMed  CAS  Google Scholar 

  61. Zhang M, Fawcett JP, Kennedy JM, et al. Stereoselective glucuronidation of formoterol by human liver microsomes. Br J Clin Pharmacol 2000; 49: 152–7

    Article  PubMed  CAS  Google Scholar 

  62. Butter JJ, van den Berg BTJ, Portier EJG, et al. Determination by HPLC with electrochemical detection of formoterol RR and SS enantiomers in urine. J Liquid Chromatogr Rel Tech 1996; 19: 993–1005

    Article  CAS  Google Scholar 

  63. Zhang M, Fawcett JP, Shaw JP. Rapid chiral high-performance liquid Chromatographic assay for salmeterol and alpha-hydroxysalmeterol: application to in vitro metabolism studies. J Chromatogr B Biomed Sci Appl 1999; 729: 225–30

    Article  PubMed  CAS  Google Scholar 

  64. Boulton DW, Fawcett JP. Determination of salbutamol enantiomers in human plasma and urine by chiral high-performance liquid chromatography. J Chromatogr B Biomed Appl 1995; 672: 103–9

    Article  PubMed  CAS  Google Scholar 

  65. Boulton DW, Fawcett JP. Enantioselective disposition of salbutamol in man following oral and intravenous administration. Br J Clin Pharmacol 1996; 41: 35–40

    Article  PubMed  CAS  Google Scholar 

  66. Zhang M, Fawcett JP, Shaw JP. Stereoselective urinary excretion of formoterol and its glucuronide conjugate in human. Br J Clin Pharmacol. In press

  67. Landoni MF, Soraci A. Pharmacology of chiral compounds: 2-arylpropionic acid derivatives. Curr Drug Metab 2001; 2: 37–51

    Article  PubMed  CAS  Google Scholar 

  68. Solomons TWG. Organic chemistry. 5th ed. New York: John Wiley and Sons Inc., 1992: 231–2

    Google Scholar 

  69. Fawcett JP, Taylor DR. Beta2-agonist enantiomers: is there a glitch with the chiral switch? Eur Respir J 1999; 13: 1223–4

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No specific sources of funding were used to prepare this manuscript. The authors do not perceive any conflicts of interest directly relevant to the content of this review. Neither are holders of Sepracor stock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Boulton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulton, D.W., Fawcett, J.P. β2-Agonist Eutomers. Am J Respir Med 1, 305–311 (2002). https://doi.org/10.1007/BF03256624

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256624

Keywords

Navigation