Skip to main content
Log in

Long-Acting β2-Agonists in Asthma: Enantioselective Safety Studies are Needed

  • Current Opinion
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Long-acting β2-agonists (LABAs) such as formoterol and salmeterol are used for prolonged bronchodilatation in asthma, usually in combination with inhaled corticosteroids (ICSs). Unexplained paradoxical asthma exacerbations and deaths have been associated with LABAs, particularly when used without ICS. LABAs clearly demonstrate effective bronchodilatation and steroid-sparing activity, but long-term treatment can lead to tolerance of their bronchodilator effects. There are also concerns with regard to the effects of LABAs on bronchial hyperresponsiveness (BHR), where long-term use is associated with increased BHR and loss of bronchoprotection. A complicating factor is that formoterol and salmeterol are both chiral compounds, usually administered as 50:50 racemic (rac-) mixtures of two enantiomers. The chiral nature of these compounds has been largely forgotten in the debate regarding LABA safety and effects on BHR, particularly that (S)-enantiomers of β2-agonists may be deleterious to asthma control. LABAs display enantioselective pharmacokinetics and pharmacodynamics. Biological plausibility of the deleterious effects of β2-agonists (S)-enantiomers is provided by in vitro and in vivo studies from the short-acting β2-agonist (SABA) salbutamol. Supportive clinical findings include the fact that patients in emergency departments who demonstrate a blunted response to salbutamol are more likely to benefit from (R)-salbutamol than rac-salbutamol, and resistance to salbutamol appears to be a contributory mechanism in rapid asthma deaths. More effort should therefore be applied to investigating potential enantiospecific effects of LABAs on safety, specifically bronchoprotection. Safety studies directly assessing the effects of LABA (S)-enantiomers on BHR are long overdue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.

    Article  PubMed  Google Scholar 

  2. Pharmacompass. Product Sales Data From Annual Reports of Major Pharmaceutical Companies 2015. http://www.pharmacompass.com/pharma-data/product-sales-data-from-annual-reports-of-major-pharmaceutical-companies-2015. Accessed 5 Dec 2017.

  3. Cazzola M, Page C, Calzetta L, Matera M. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev. 2012;64(3):450–504.

    Article  CAS  PubMed  Google Scholar 

  4. Castle W, Fuller R, Hall J, Palmer J. Serevent nationwide surveillance study: comparison of salmeterol with salbutamol in asthmatic patients who require regular bronchodilator treatment. BMJ. 1993;306(6884):1034–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chowdhury B, Dal Pan G. The FDA and safe use of long-acting beta-agonists in the treatment of asthma. N Engl J Med. 2010;362(13):1169–71.

    Article  CAS  PubMed  Google Scholar 

  6. Nelson H, Weiss S, Bleecker E, Yancey S, Dorinsky P. The Salmeterol Multicenter Asthma Research Trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006;129(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  7. Mann M, Chowdhury B, Sullivan E, Nicklas R, Anthracite R, Meyer R. Serious asthma exacerbations in asthmatics treated with high-dose formoterol. Chest. 2003;124(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  8. van Asperen P. Deaths from childhood asthma, 2004–2013: what lessons can we learn? Med J Aust. 2015;202(3):125–6.

    Article  PubMed  Google Scholar 

  9. Walters E, Gibson P, Lasserson T, Walters J. Long-acting beta2-agonists for chronic asthma in adults and children where background therapy contains varied or no inhaled corticosteroid. Cochrane Database Syst Rev. 2007;(1):CD001385.

  10. Cates C, Wieland L, Oleszczuk M, Kew K. Safety of regular formoterol or salmeterol in adults with asthma: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2014;(2):CD010314.

  11. US Food and Drug Administration (FDA). FDA Drug Safety Communication: FDA requires post-market safety trials for long-acting beta-agonists (LABAs). 2011. https://www.fda.gov/Drugs/DrugSafety/ucm251512.htm. Accessed 5 Dec 2017.

  12. Global Initiative for Asthma (GINA). Pocket Guide for Asthma Management and Prevention (Updated 2017). 2017. http://ginasthma.org/2017-pocket-guide-for-asthma-management-and-prevention/. Accessed 5 Dec 2017.

  13. Ullman A, Hedner J, Svedmyr N. Inhaled salmeterol and salbutamol in asthmatic patients. An evaluation of asthma symptoms and the possible development of tachyphylaxis. Am Rev Respir Dis. 1990;142(3):571–5.

    Article  CAS  PubMed  Google Scholar 

  14. Arvidsson P, Larsson S, Lofdahl C, Melander B, Wahlander L, Svedmyr N. Formoterol, a new long-acting bronchodilator for inhalation. Eur Respir J. 1989;2(4):325–30.

    CAS  PubMed  Google Scholar 

  15. Wraight JM, Hancox RJ, Herbison GP, Cowan JO, Flannery EM, Taylor DR. Bronchodilator tolerance: the impact of increasing bronchoconstriction. Eur Respir J. 2003;21(5):810–5.

    Article  CAS  PubMed  Google Scholar 

  16. Cooper PR, Kurten RC, Zhang J, Nicholls DJ, Dainty IA, Panettieri RA. Formoterol and salmeterol induce a similar degree of beta2-adrenoceptor tolerance in human small airways but via different mechanisms. Br J Pharmacol. 2011;163(3):521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haney S, Hancox RJ. Tolerance to bronchodilation during treatment with long-acting beta-agonists, a randomised controlled trial. Respir Res. 2005;6:107.

    Article  PubMed  PubMed Central  Google Scholar 

  18. van Veen A, Weller FR, Wierenga EA, Jansen HM, Jonkers RE. A comparison of salmeterol and formoterol in attenuating airway responses to short-acting beta2-agonists. Pulm Pharmacol Ther. 2003;16(3):153–61.

    Article  PubMed  Google Scholar 

  19. Elers J, Strandbygaard U, Pedersen L, Backer V. Daily use of salmeterol causes tolerance to bronchodilation with terbutaline in asthmatic subjects. Open Respir Med J. 2010;4:48–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sterk PJ, Bel EH. Bronchial hyperresponsiveness: the need for a distinction between hypersensitivity and excessive airway narrowing. Eur Respir J. 1989;2(3):267–74.

    CAS  PubMed  Google Scholar 

  21. Calzetta L, Spina D, Cazzola M, Page C, Facciolo F, Rendina E, et al. Pharmacological characterization of adenosine receptors on isolated human bronchi. Am J Respir Cell Mol Biol. 2011;45(6):1222–31.

    Article  CAS  PubMed  Google Scholar 

  22. Laprise C, Boulet L. Asymptomatic airway hyperresponsiveness: a three-year follow-up. Am J Respir Crit Care Med. 1997;156(2 Pt 1):403–9.

    Article  CAS  PubMed  Google Scholar 

  23. Rijcken B, Schouten J, Xu X, Rosner B, Weiss S. Airway hyperresponsiveness to histamine associated with accelerated decline in FEV1. Am J Respir Crit Care Med. 1995;151(5):1377–82.

    Article  CAS  PubMed  Google Scholar 

  24. O’Byrne P, Kerstjens H. Inhaled beta 2-agonists in the treatment of asthma. N Engl J Med. 1996;335(12):886–8.

    Article  PubMed  Google Scholar 

  25. Cheung D, Timmers M, Zwinderman A, Bel E, Dijkman J, Sterk P. Long-term effects of a long-acting beta 2-adrenoceptor agonist, salmeterol, on airway hyperresponsiveness in patients with mild asthma. N Engl J Med. 1992;327(17):1198–203.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor DR, Sears MR, Herbison GP, Flannery EM, Print CG, Lake DC, et al. Regular inhaled beta agonist in asthma: effects on exacerbations and lung function. Thorax. 1993;48(2):134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith S. Chiral toxicology: it’s the same thing…only different. Toxicol Sci. 2009;110(1):4–30.

    Article  CAS  PubMed  Google Scholar 

  28. US Food and Drug Administration (FDA). Development of New Stereoisomeric Drugs. Guidances (Drugs). 1992. http://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/guidances/ucm122883.htm. Accessed 5 Dec 2017.

  29. Handley D, Senanayake C, Dutczak W, Benovic J, Walle T, Penn R, et al. Biological actions of formoterol isomers. Pulm Pharmacol Ther. 2002;15(2):135–45.

    Article  CAS  PubMed  Google Scholar 

  30. Nials AT, Coleman RA, Johnson M, Vardey CJ. The beta-adrenoceptor pharmacology of the enantiomers of salmeterol. Am Rev Respir Dis. 1994;149:A481.

    Google Scholar 

  31. Martindale. Martindale: the complete drug reference. London: Pharmaceutical Press. 2014. https://www.medicinescomplete.com/mc/martindale/current/. Accessed 5 Dec 2017.

  32. Lotvall J, Palmqvist M, Arvidsson P, Maloney A, Ventresca G, Ward J. The therapeutic ratio of R-albuterol is comparable with that of RS-albuterol in asthmatic patients. J Allergy Clin Immunol. 2001;108(5):726–31.

    Article  CAS  PubMed  Google Scholar 

  33. Procopiou PA, Barrett VJ, Bevan NJ, Biggadike K, Box PC, Butchers PR, et al. Synthesis and structure-activity relationships of long-acting beta2 adrenergic receptor agonists incorporating metabolic inactivation: an antidrug approach. J Med Chem. 2010;53(11):4522–30.

    Article  CAS  PubMed  Google Scholar 

  34. Matera MG, Ora J, Cazzola M. Differential pharmacology and clinical utility of long-acting bronchodilators in COPD—focus on olodaterol. Ther Clin Risk Manag. 2015;11:1805–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Battram C, Charlton SJ, Cuenoud B, Dowling MR, Fairhurst RA, Farr D, et al. In vitro and in vivo pharmacological characterization of 5-[(R)-2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quinolin-2-one (indacaterol), a novel inhaled beta(2) adrenoceptor agonist with a 24-h duration of action. J Pharmacol Exp Ther. 2006;317(2):762–70.

    Article  CAS  PubMed  Google Scholar 

  36. Gellad WF, Choi P, Mizah M, Good CB, Kesselheim AS. Assessing the chiral switch: approval and use of single-enantiomer drugs, 2001 to 2011. Am J Manag Care. 2014;20(3):e90–7.

    PubMed  Google Scholar 

  37. Blake K, Raissy H. Chiral switch drugs for asthma and allergies: true benefit or marketing hype. Pediatr Allergy Immunol Pulmonol. 2013;26(3):157–60.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alkhafaji AA, Trinquart L, Baron G, Desvarieux M, Ravaud P. Impact of evergreening on patients and health insurance: a meta analysis and reimbursement cost analysis of citalopram/escitalopram antidepressants. BMC Med. 2012;10:142.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jat KR, Khairwa A. Levalbuterol versus albuterol for acute asthma: a systematic review and meta-analysis. Pulm Pharmacol Ther. 2013;26(2):239–48.

    Article  CAS  PubMed  Google Scholar 

  40. Cockcroft DW, McParland CP, Britto SA, Swystun VA, Rutherford BC. Regular inhaled salbutamol and airway responsiveness to allergen. Lancet. 1993;342(8875):833–7.

    Article  CAS  PubMed  Google Scholar 

  41. Stewart SL, Martin AL, Davis BE, Cockcroft DW. Salbutamol tolerance to bronchoprotection: course of onset. Ann Allergy Asthma Immunol. 2012;109(6):454–7.

    Article  CAS  PubMed  Google Scholar 

  42. Nowak R, Emerman C, Hanrahan JP, Parsey MV, Hanania NA, Claus R, et al. A comparison of levalbuterol with racemic albuterol in the treatment of acute severe asthma exacerbations in adults. Am J Emerg Med. 2006;24(3):259–67.

    Article  PubMed  Google Scholar 

  43. Milgrom H, Skoner DP, Bensch G, Kim KT, Claus R, Baumgartner RA, et al. Low-dose levalbuterol in children with asthma: safety and efficacy in comparison with placebo and racemic albuterol. J Allergy Clin Immunol. 2001;108(6):938–45.

    Article  CAS  PubMed  Google Scholar 

  44. Mitra S, Ugur M, Ugur O, Goodman H, McCullough J, Yamaguchi H. (S)-Albuterol increases intracellular free calcium by muscarinic receptor activation and a phospholipase C-dependent mechanism in airway smooth muscle. Mol Pharmacol. 1998;53(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  45. Templeton AG, Chapman ID, Chilvers ER, Morley J, Handley DA. Effects of S-salbutamol on human isolated bronchus. Pulm Pharmacol Ther. 1998;11(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  46. Mazzoni L, Naef R, Chapman I, Morley J. Hyperresponsiveness of the airways following exposure of guinea-pigs to racemic mixtures and distomers of beta 2-selective sympathomimetics. Pulm Pharmacol. 1994;7(6):367–76.

    Article  CAS  PubMed  Google Scholar 

  47. Volcheck G, Kelkar P, Bartemes K, Gleich G, Kita H. Effects of (R)- and (S)-isomers of beta-adrenergic agonists on eosinophil response to interleukin-5. Clin Exp Allergy. 2005;35(10):1341–6.

    Article  CAS  PubMed  Google Scholar 

  48. Matera M, Calzetta L, Rogliani P, Bardaro F, Page C, Cazzola M. Evaluation of the effects of the R- and S-enantiomers of salbutamol on equine isolated bronchi. Pulm Pharmacol Ther. 2011;24(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  49. Keir S, Page C, Spina D. Bronchial hyperresponsiveness induced by chronic treatment with albuterol: role of sensory nerves. J Allergy Clin Immunol. 2002;110(3):388–94.

    Article  CAS  PubMed  Google Scholar 

  50. Hancox R. Concluding remarks: can we explain the association of beta-agonists with asthma mortality? A hypothesis. Clin Rev Allergy Immunol. 2006;31(2–3):279–88.

    Article  PubMed  Google Scholar 

  51. Abraha D, Cho S, Agrawal D, Park J, Oh C. (S,S)-formoterol increases the production of IL-4 in mast cells and the airways of a murine asthma model. Int Arch Allergy Immunol. 2004;133(4):380–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mhanna M, Koester J, Cohn R. Effects of (R,R)- and (R,R/S,S)-formoterol on airway relaxation and contraction in an experimental rat model. Curr Ther Res Clin Exp. 2007;68(4):249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schmidt D, Kallstrom BL, Waldeck B, Branscheid D, Magnussen H, Rabe KF. The effect of the enantiomers of formoterol on inherent and induced tone in guinea-pig trachea and human bronchus. Naunyn Schmiedebergs Arch Pharmacol. 2000;361(4):405–9.

    Article  CAS  PubMed  Google Scholar 

  54. Jacobson G, Yee K, Premilovac D, Rattigan S. Enantioselective disposition of (R/S)-albuterol in skeletal and cardiac muscle. Drug Test Anal. 2014;6(6):563–7.

    Article  CAS  PubMed  Google Scholar 

  55. Yee K, Jacobson G, Wood-Baker R, Walters E. Albuterol enantiomer levels, lung function, and QTc interval in patients with acute severe asthma and COPD in the emergency department. Int J Emerg Med. 2011;4(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jacobson G, Yee K, Wood-Baker R, Walters E. SULT 1A3 single-nucleotide polymorphism and the single dose pharmacokinetics of inhaled salbutamol enantiomers: are some athletes at risk of higher urine levels? Drug Test Anal. 2015;7(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang M, Fawcett J, Shaw J. Stereoselective urinary excretion of formoterol and its glucuronide conjugate in human. Br J Clin Pharmacol. 2002;54(3):246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guillemette C, Levesque E, Rouleau M. Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther. 2014;96(3):324–39.

    Article  CAS  PubMed  Google Scholar 

  59. Jacobson GA, Hostrup M, Narkowicz CK, Nichols DS, Haydn Walters E. Enantioselective disposition of (R)-salmeterol and (S)-salmeterol in urine following inhaled dosing and application to doping control. Drug Test Anal. 2017;9(8):1262–6.

    Article  CAS  PubMed  Google Scholar 

  60. Lotvall J, Palmqvist M, Ankerst J, Persson G, Rosenborg J, Bengtsson T, et al. The effect of formoterol over 24 h in patients with asthma: the role of enantiomers. Pulm Pharmacol Ther. 2005;18(2):109–13.

    Article  PubMed  Google Scholar 

  61. Hinkle J, Hinson J, Kerwin E, Goodwin E, Sciarappa K, Curry L, et al. A cumulative dose, safety and tolerability study of arformoterol in pediatric subjects with stable asthma. Pediatr Pulmonol. 2011;46(8):761–9.

    Article  CAS  PubMed  Google Scholar 

  62. Donohue JF, Ganapathy V, Bollu V, Stensland MD, Nelson LM. Health status of patients with moderate to severe COPD after treatment with nebulized arformoterol tartrate or placebo for 1 year. Clin Ther. 2017;39(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  63. Donohue JF, Hanania NA, Make B, Miles MC, Mahler DA, Curry L, et al. One-year safety and efficacy study of arformoterol tartrate in patients with moderate to severe COPD. Chest. 2014;146(6):1531–42.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hanania NA, Donohue JF, Nelson H, Sciarappa K, Goodwin E, Baumgartner RA, et al. The safety and efficacy of arformoterol and formoterol in COPD. COPD. 2010;7(1):17–31.

    Article  PubMed  Google Scholar 

  65. Tashkin DP, Donohue JF, Mahler DA, Huang H, Goodwin E, Schaefer K, et al. Effects of arformoterol twice daily, tiotropium once daily, and their combination in patients with COPD. Respir Med. 2009;103(4):516–24.

    Article  CAS  PubMed  Google Scholar 

  66. Donohue JF, Hanania NA, Sciarappa KA, Goodwin E, Grogan DR, Baumgartner RA, et al. Arformoterol and salmeterol in the treatment of chronic obstructive pulmonary disease: a one year evaluation of safety and tolerance. Ther Adv Respir Dis. 2008;2(2):37–48.

    Article  CAS  PubMed  Google Scholar 

  67. Hanrahan JP, Grogan DR, Baumgartner RA, Wilson A, Cheng H, Zimetbaum PJ, et al. Arrhythmias in patients with chronic obstructive pulmonary disease (COPD): occurrence frequency and the effect of treatment with the inhaled long-acting beta2-agonists arformoterol and salmeterol. Medicine (Baltimore). 2008;87(6):319–28.

    Article  CAS  PubMed  Google Scholar 

  68. Kharidia J, Fogarty C, Laforce C, Maier G, Hsu R, Dunnington K, et al. A pharmacokinetic/pharmacodynamic study comparing arformoterol tartrate inhalation solution and racemic formoterol dry powder inhaler in subjects with chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2008;21(4):657–62.

    Article  CAS  PubMed  Google Scholar 

  69. Hanrahan JP, Hanania NA, Calhoun WJ, Sahn SA, Sciarappa K, Baumgartner RA. Effect of nebulized arformoterol on airway function in COPD: results from two randomized trials. COPD. 2008;5(1):25–34.

    Article  PubMed  Google Scholar 

  70. Baumgartner RA, Hanania NA, Calhoun WJ, Sahn SA, Sciarappa K, Hanrahan JP. Nebulized arformoterol in patients with COPD: a 12-week, multicenter, randomized, double-blind, double-dummy, placebo- and active-controlled trial. Clin Ther. 2007;29(2):261–78.

    Article  CAS  PubMed  Google Scholar 

  71. Kraan J, Koeter GH, vd Mark TW, Sluiter HJ, de Vries K. Changes in bronchial hyperreactivity induced by 4 weeks of treatment with antiasthmatic drugs in patients with allergic asthma: a comparison between budesonide and terbutaline. J Allergy Clin Immunol. 1985;76(4):628–36.

    Article  CAS  PubMed  Google Scholar 

  72. Wahedna I, Wong CS, Wisniewski AF, Pavord ID, Tattersfield AE. Asthma control during and after cessation of regular beta 2-agonist treatment. Am Rev Respir Dis. 1993;148(3):707–12.

    Article  CAS  PubMed  Google Scholar 

  73. van Schayck CP, Graafsma SJ, Visch MB, Dompeling E, van Weel C, van Herwaarden CL. Increased bronchial hyperresponsiveness after inhaling salbutamol during 1 year is not caused by subsensitization to salbutamol. J Allergy Clin Immunol. 1990;86(5):793–800.

    Article  PubMed  Google Scholar 

  74. Drazen JM, Israel E, Boushey HA, Chinchilli VM, Fahy JV, Fish JE, et al. Comparison of regularly scheduled with as-needed use of albuterol in mild asthma. Asthma Clinical Research Network. N Engl J Med. 1996;335(12):841–7.

    Article  CAS  PubMed  Google Scholar 

  75. James AL, Elliot JG, Abramson MJ, Walters EH. Time to death, airway wall inflammation and remodelling in fatal asthma. Eur Respir J. 2005;26(3):429–34.

    Article  CAS  PubMed  Google Scholar 

  76. Lewis L, Ferguson I, House SL, Aubuchon K, Schneider J, Johnson K, et al. Albuterol administration is commonly associated with increases in serum lactate in patients with asthma treated for acute exacerbation of asthma. Chest. 2014;145(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  77. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Osimani B, Mignini F. Causal assessment of pharmaceutical treatments: why standards of evidence should not be the same for benefits and harms? Drug Saf. 2015;38(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  79. Sears M. The FDA-mandated trial of safety of long-acting beta-agonists in asthma: finality or futility? Thorax. 2013;68(2):195–8.

    Article  PubMed  Google Scholar 

  80. Salpeter S, Buckley N, Ormiston T, Salpeter E. Meta-analysis: effect of long-acting beta-agonists on severe asthma exacerbations and asthma-related deaths. Ann Intern Med. 2006;144(12):904–12.

    Article  CAS  PubMed  Google Scholar 

  81. Perrin-Fayolle M, Blum PS, Morley J, Grosclaude M, Chambe MT. Differential responses of asthmatic airways to enantiomers of albuterol. Implications for clinical treatment of asthma. Clin Rev Allergy Immunol. 1996;14(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  82. Leclere M, Lavoie-Lamoureux A, Lavoie J. Heaves, an asthma-like disease of horses. Respirology. 2011;16(7):1027–46.

    Article  PubMed  Google Scholar 

  83. Pirie RS, Couetil LL, Robinson NE, Lavoie JP. Equine asthma: an appropriate, translational and comprehendible terminology? Equine Vet J. 2016;48(4):403–5.

    Article  CAS  PubMed  Google Scholar 

  84. Calzetta L, Roncada P, di Cave D, Bonizzi L, Urbani A, Pistocchini E, et al. Pharmacological treatments in asthma-affected horses: a pair-wise and network meta-analysis. Equine Vet J. 2017;49(6):710–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn A. Jacobson.

Ethics declarations

Funding

For the conception and writing of this manuscript, Glenn Jacobson was funded by an ongoing academic appointment at the University of Tasmania.

Conflicts of interest

Glenn Jacobson and Morten Hostrup have received funding from the World Anti-Doping Agency (WADA), including investigations into the enantioselective detection and performance-enhancing effects of β2-agonists. Sharanne Raidal, Luigino Calzetta, Richard Wood-Baker, Mark O. Farber, and Clive P. Page have not received funding related to this work and have no conflicts of interest to declare. E. Haydn Walters is in receipt of investigator-initiated funding from Boehringer-Ingelheim for a study of airway infection mechanisms in COPD and has received honoraria funding from GlaxoSmithKline for speaking on asthma and COPD therapy to medical practitioners.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobson, G.A., Raidal, S., Hostrup, M. et al. Long-Acting β2-Agonists in Asthma: Enantioselective Safety Studies are Needed. Drug Saf 41, 441–449 (2018). https://doi.org/10.1007/s40264-017-0631-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-017-0631-1

Navigation