Skip to main content
Log in

Biomarkers of Clinical Responsiveness in Brain Tumor Patients

Progress and Potential

  • Cancer
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Gliomas are the most common primary brain tumors in adults. Anaplastic astrocytoma and glioblastoma multiforme represent malignant astrocytomas, which are the most common type of malignant gliomas. Despite research efforts in cancer therapy, the prognosis of patients with malignant gliomas remains poor. Research efforts in recent years have focused on investigating the cellular, molecular, and genetic pathways involved in the progression of malignant gliomas. As a result, biomarkers have emerged as diagnostic, predictive, and prognostic tools that have the potential to transform the field of brain tumor diagnostics. An increased understanding of the important molecular pathways that have been implicated in the progression of malignant gliomas has led to the identification of potential diagnostic, prognostic, and predictive biomarkers, some bearing clinical implications for targeted therapy. Some of the most promising biomarkers to date include loss of chromosomes 1p/19q in oligodendrogliomas and expression of O-6-methylguanine-DNA methyltransferase (MGMT) or epidermal growth factor receptor (EGFR) status in glioblastomas. Other promising biomarkers in glioma research include glial fibrillary acidic protein, galectins, Kir potassium channel proteins, angiogenesis, and apoptosis pathway markers. Research into the clinical relevance and applicability of such biomarkers has the potential to revolutionize our approach to the diagnosis and treatment of patients with malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

References

  1. Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol Mech Dis 2006; 1: 97–117

    Article  CAS  Google Scholar 

  2. Sathonsumetee S, Reardon DA, Desjardins A, et al. Molecularly targeted therapy for malignant glioma. Cancer 2007 Jul 1; 110(1): 13–24

    Article  Google Scholar 

  3. Kleihues P, Cavenee WK. World Health Organization classification of tumors. Pathology and genetics: tumors of the nervous system. 2nd ed. Albany (NY): WHO Publications Centre USA, 2000

    Google Scholar 

  4. Scott CB, Scarantino C, Urtasun R, et al. Validation and predictive power of Radiaton Therapy Oncology Group (RTOG) recursive partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. Int J Radiat Oncol Biol Phys 1998; 40: 51–5

    Article  PubMed  CAS  Google Scholar 

  5. Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001; 15: 1311–33

    Article  PubMed  CAS  Google Scholar 

  6. Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2001; 2: 120–9

    Article  PubMed  CAS  Google Scholar 

  7. Louis DN, Pomeroy SL, Cairncross JG. Focus on CNS neoplasia. Cancer Cell 2002; 1: 125–8

    Article  PubMed  CAS  Google Scholar 

  8. Yip S, Iafrate AJ, Louis DN. Molecular diagnostic testing in malignant gliomas: a practical update on predictive markers. J Neuropathol Exp Neurol 2008 Jan; 67(1): 1–15

    Article  PubMed  CAS  Google Scholar 

  9. Partridge M, Gaballah K, Huang X. Molecular markers for diagnosis and prognosis. Cancer Metastasis Rev 2005; 24: 71–85

    Article  PubMed  CAS  Google Scholar 

  10. Conley BA, Taube SE. Prognosis and predictive markers in cancer. Dis Markers 2004; 20: 35–43

    PubMed  CAS  Google Scholar 

  11. Mischel PS, Cloughesy TF, Nelson S. F. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nature 2004 Oct; 5: 782–92

    CAS  Google Scholar 

  12. Bailey P, Cushing H. A classification of the tumors of the glioma group on a histogenic basis with a correlated study of prognosis. Philadelphia (PA): Lippincott, 1928

    Google Scholar 

  13. Sathornsumetee S, Rich JN. New treatment strategies for malignant gliomas. Expert Rev Anticancer Ther 2006; 6: 1087–104

    Article  PubMed  CAS  Google Scholar 

  14. Houillier C, Lejeune J, Benouaich AA, et al. Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer 2006; 106: 2218–23

    Article  PubMed  CAS  Google Scholar 

  15. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1999; 1: 44–51

    PubMed  CAS  Google Scholar 

  16. Holland EC. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet 2000; 25: 55–7

    Article  PubMed  CAS  Google Scholar 

  17. Choe G. Analysis of the phophatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003; 63: 2742–6

    PubMed  CAS  Google Scholar 

  18. Ermoian RP. Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 2002; 8: 1100–6

    PubMed  CAS  Google Scholar 

  19. Shai R, Shi T, Kremen TJ, et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 2003; 22: 4918–32

    Article  PubMed  CAS  Google Scholar 

  20. Rickman DS, Bobek MP, Misek DE, et al. Distinctive molecular profiles of high grade and low grade gliomas based on oligonucleotide microarray analysis. Cancer Res 2001; 61: 6885–91

    PubMed  CAS  Google Scholar 

  21. Sallinen SL, Sallinen PK, Haapasalo HK, et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 2000; 60: 6617–22

    PubMed  CAS  Google Scholar 

  22. Huang H, Colella S, Kurner M, et al. Gene expression profiling of low grade diffuse astrocytomas by cDNA arrays. Cancer Res 2000; 60: 6868–74

    PubMed  CAS  Google Scholar 

  23. Fuller GN, Rhee CH, Hess KR, et al. Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 1999; 59: 4228–32

    PubMed  CAS  Google Scholar 

  24. Godard S, Getz G, Delorenzi M, et al. Classification of human astrocytic gliomas on the basis of gene expression: a correlated gropu of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 2003; 63: 6613–25

    PubMed  CAS  Google Scholar 

  25. Von Deimling A, Von Ammon K, Schoenfeld D, et al. Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 1993; 3: 19–26

    Article  Google Scholar 

  26. Watanabe K, Tachibana O, Sata K, et al. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 1996; 6: 217–23

    Article  PubMed  CAS  Google Scholar 

  27. Bigner SH, Humphrey PA, Wong AJ, et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 1990; 50: 8017–22

    PubMed  CAS  Google Scholar 

  28. Agosti RM, Leuthold M, Gullick WJ, et al. Expression of the epidermal growth factor receptor in astrocytic tumours is specifically associated with glioblastoma multiforme. Virchows Arch A Pathol Anat Histopathol 1992; 420: 321–5

    Article  PubMed  CAS  Google Scholar 

  29. Zhu Y, Parada LF. The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2002; 2: 616–26

    Article  PubMed  CAS  Google Scholar 

  30. Kesari S, Ramakrishna N, Sauvageot C, et al. Targeted molecular therapy of malignant gliomas. Curr Neurol Neurosci Rep 2006; 5: 186–97

    Article  Google Scholar 

  31. Sugawa N, Ekstrand AJ, James CD, et al. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A 1990; 87: 8602–6

    Article  PubMed  CAS  Google Scholar 

  32. Burger PC, Pearl DK, Aldape K, et al. Small cell architecture: a histological equivalent of EGFR amplification in glioblastoma multiforme? J Neuropathol Exp Neurol 2001; 60: 1099–104

    PubMed  CAS  Google Scholar 

  33. Mischel RS, Ruty S, Tao S, et al. Identification of molecular subtypes of glioblasotma by gene expression profiling. Oncogene 2003; 22: 2361–73

    Article  PubMed  CAS  Google Scholar 

  34. Facoetti A, Ranza E, Nano R. Proliferation and programmed cell death: role of p53 protein in high and low grade astrocytoma. Anticancer Res 2008; 1Suppl. A: 15–9

    Google Scholar 

  35. Nozaki M, Tada M, Kobayashi H, et al. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro Oncol 1999; 1(2): 124–37

    PubMed  CAS  Google Scholar 

  36. Kato H, Kato S, Kumabe T, et al. Functional evaluation of p53 and PTEN gene mutations in gliomas. Clin Cancer Res 2000; 6(10): 3937–43

    PubMed  CAS  Google Scholar 

  37. Ohgaki H, Dessen P, Jourde B, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004; 64: 6892–9

    Article  PubMed  CAS  Google Scholar 

  38. Ino Y, Betensky RA, Zlatescu MC, et al. Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin Cancer Res 2001; 7: 893–45

    Google Scholar 

  39. Cairncross JG, Ueki K, Zlatescu MC, et al. Specific chromosomal losses predict chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90: 1473–9

    Article  PubMed  CAS  Google Scholar 

  40. Smith JS, Perry A, Borell TJ, et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 2000; 18: 636–45

    PubMed  CAS  Google Scholar 

  41. Chahlavi A, Kanner A, Peereboom D, et al. Impact of chromosome 1p status in response of oligodendroglioma to temozolomide: preliminary results. J Neurooncol 2003; 61: 267–3

    Article  PubMed  Google Scholar 

  42. Hoang-Xuan K, Capelle L, Kujas M, et al. Temozolomide as initial treatment for adults with low-grade oligodendrogliomas or oligoastrocytomas and correlation with chromosome 1p deletions. J Clin Oncol 2004; 22: 3133–8

    Article  PubMed  CAS  Google Scholar 

  43. Bauman GS, Ino Y, Ueki K, et al. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int J Radiat Oncol Biol Phys 2000; 48: 825–30

    Article  PubMed  CAS  Google Scholar 

  44. Cairncross G, Berkey B, Shaw E, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma. Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 2006; 24: 2707–14

    Article  PubMed  CAS  Google Scholar 

  45. Van den Bent MJ, Carpentier AF, Grandes AA, et al. Adjuvant procarbazine, lomustine, and vincristine improve progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organization for Research and treamtent of cancer phase III trial. J Clin Oncol 2006; 24: 2715–22

    Article  PubMed  Google Scholar 

  46. ClinicalTrials.gov. Radiation therapy with or without chemotherapy in treating patients with anaplastic oligodendroglioma [online]. Available from URL: http://www.clinicaltrials.gov/ct2/show/NCT00002569 [Accessed 2008 Jul 9]

  47. ClinicalTrials.gov. Radiation therapy with and without combination chemotherapy in patients with resected anaplastic oligodendroglioma [online]. Available from URL: http://www.clinicaltrials.gov/ct2/show/NCT00002840 [Accessed 2008 Jul 9]

  48. Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomized trails. Lancet 2002; 359: 1011–8

    Article  PubMed  CAS  Google Scholar 

  49. Jacckle KA, Eyre HJ, Townsend JJ, et al. Correlation of tumor O6-methylguanine-DNA methyltransferase levels with survival of malignant astroctytoma pateints treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J Clin Oncol 1998; 16: 3310–5

    Google Scholar 

  50. Martinez R, Schackert G, Yaya-Tur R, et al. Frequent hypermethylation of the DNA repair gene MGMT in long term survivors of glioblastoma multiforme. J Neurooncol 2007; 83: 91–3

    Article  PubMed  CAS  Google Scholar 

  51. Silber JR, Babola MS, Ghartan S, et al. O6-methyguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. Cancer Res 1998; 58: 1068–73

    PubMed  CAS  Google Scholar 

  52. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000; 343: 1350–4

    Article  PubMed  CAS  Google Scholar 

  53. Esteller M, Hamilton SR, Burger PC, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 1999; 59: 793–7

    PubMed  CAS  Google Scholar 

  54. Gerson SL. MGMT: its role in cancer aetiology and cancer theapeutics. Nat Rev Cancer 2004; 4: 296–307

    Article  PubMed  CAS  Google Scholar 

  55. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352: 997–1003

    Article  PubMed  CAS  Google Scholar 

  56. Everhard S, Kaloshi G, Criniere E, et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann Neurol 2006; 60: 740–3

    Article  PubMed  CAS  Google Scholar 

  57. ClinicalTrials.gov. Radiation therapy and temozolomide in treating patients with newly diagnosed glioblastoma or gliosarcoma [online]. Available from URL: http://www.clinicaltrials.gov/ct2/show/NCT00304031 [Accessed 2008 Jul 9]

  58. Chakravarti A, Zhai G, Suzuki Y, et al. The prognostic significance of phophatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 2004; 22: 1926–33

    Article  PubMed  CAS  Google Scholar 

  59. Haas-Kogan DA, Prados MD, Tihan T, et al. Epidermal growth factor receptor, protein kinase B/AKT, and glioma response to erlotinib. J Natl Cancer Inst 2005; 97: 880–7

    Article  PubMed  CAS  Google Scholar 

  60. Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 2012–24

    Article  PubMed  CAS  Google Scholar 

  61. Rich JN, Reardon DA, Peery T, et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004; 22: 133–42

    Article  PubMed  CAS  Google Scholar 

  62. Raizer JJ, Abrey LE, Wen P. A phase II trial of erlotinib (OSI-774) in patients (pts) with recurrent malignant gliomas (MG) not on EIAEDs. J Clin Oncol 2004; 22: 1502

    Google Scholar 

  63. Sathornsumetee S, Cao Y, Marcello JE, et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 2008; 26: 271–8

    Article  PubMed  CAS  Google Scholar 

  64. Vredenburgh JJ, Desjardins A, Herndon JE, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007; 13: 1253–9

    Article  PubMed  CAS  Google Scholar 

  65. Vredenburgh JJ, Desjardins A, Herndon JE, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007; 125: 4722–9

    Article  Google Scholar 

  66. Jung CS, Foerch C, Schanzer A, et al. Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain 2007; 130: 3336–41

    Article  PubMed  CAS  Google Scholar 

  67. Konstantinidou AE, Korkolopoulou P, Patsouris E. Apoptotic markers for primary brain tumor prognosis. J Neurooncol 2005; 72: 151–6

    Article  PubMed  CAS  Google Scholar 

  68. Yamaoka K, Mishima K, Nagashima Y, et al. Expression of galectin-2 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells. J Neurosci Res 2000; 59: 722–30

    Article  PubMed  CAS  Google Scholar 

  69. Neder LM, Marie SK, Carlotti CG, et al. Galectin-3 as an immunohistochemical tool to distinguish pilocytic astrocytomas from diffuse astrocytomas, and glioblastomas from anaplastic oligodendrogliomas. Brain Pathol 2004; 14: 399–405

    Article  PubMed  CAS  Google Scholar 

  70. Bresalier RS, Yan PS, Byrd JC, et al. Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer 1997; 80: 776–87

    Article  PubMed  CAS  Google Scholar 

  71. Tan G, Sun SQ, Yuan DL. Expression of Kir 4.1 in human astrocytic tumors: correlation with pathologic grade. Biochem Biophys Res Comm 2008; 367: 743–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants to Dr Chakravarti: NIH/NCI Grant RO1CA108633, Goldhirsh Foundation Award, the Brain Tumor Funder’s Collaborative Grant, and Brian D. Silber Fund.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chakravarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Jawahri, A., Patel, D., Zhang, M. et al. Biomarkers of Clinical Responsiveness in Brain Tumor Patients. Mol Diag Ther 12, 199–208 (2008). https://doi.org/10.1007/BF03256285

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256285

Keywords

Navigation