Skip to main content
Log in

Hydrothermal growth of calcium titanate nanowires from titania

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Perovskite calcium titanate (CaTiO3) nanowires with average diameters in the range of 120–130 nm were grown by hydrothermal treatment of commercial anatase-titania (TiO2) and calcium chloride in aqueous sodium hydroxide solution (2.5–13 M). Reactions were carried out in temperature range of 110–150 °C at various pH (9–13) for 12–72 h. The study revealed that these parameters affect the crystal morphology and size of crystallites. Reaction products obtained at different stages were characterized by thermogravimetry (TG) and differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The XRD analysis revealed the formation of CaTiO3 phases with orthorhombic crystal structure. Thermal analysis results showed that anatase-TiO2 was thermally stable below 400 °C and at higher temperatures anatase transforms to rutile phase whereas CaTiO3 was stable up to 850 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291 (2001) 630.

    CAS  Google Scholar 

  2. M.H. Huang, S. Mao, P.D. Yang, Science 292 (2001) 1897.

    CAS  Google Scholar 

  3. E.W. Wong, P.E. Sheehan, C.M. Lieber, Science 277 (1997) 1971.

    CAS  Google Scholar 

  4. J. Liu, P. Gao, W. Mai, C. Lao, Z.L. Wang, Appl. Phys. Lett. 89 (2006) 063125.

    Google Scholar 

  5. B. Jaffe, W.R. Cook, H. Jaff, Piezoelectric Ceramics, Academic Press, NY, 1971, p. 148.

    Google Scholar 

  6. D. Croker, M. Loan, B.K. Hodnett, Cryst. Growth Des. 9 (2009) 2207.

    CAS  Google Scholar 

  7. X.S. Wang, C.N. Xu, H. Yamada, K. Nishikubo, X.G. Zheng, Adv. Mater. 17 (2005) 1254.

    CAS  Google Scholar 

  8. M. Inoue, A.P. Rodriguez, T. Takagi, N. Katase, M. Kubota, N. Nagai, H. Nagatsuka, N. Nagaoka, S. Takagi, K. Suzuki, J. Biomater. Appl. 24 (2010) 657.

    Google Scholar 

  9. A.E. Ringwood, Min. Mag. 49 (1985) 159.

    CAS  Google Scholar 

  10. K. Parlinski, Y. Kawazoe, Y. Waseda, J. Chem. Phys. 114 (2001) 2395.

    CAS  Google Scholar 

  11. A. Kalendová, D. Veselý, P. Kalenda, J. Pigment. Resin Technol. 36 (2007) 123.

    Google Scholar 

  12. T. Zhang, Z. Liu, K.M. Lp, Y.P. Leung, Q. Li, S.K. Hark, J. Appl. Phys. 95 (2004) 5752.

    CAS  Google Scholar 

  13. J. Liu, J.L. Duan, M.E. Toimil-Molares, S. Karim, T.W. Cornelius, D. Dobrev, H.J. Yao, R. Neumann, Nanotechnol. 17 (2006) 1922.

    CAS  Google Scholar 

  14. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16 (2001) 3331.

    CAS  Google Scholar 

  15. Y. Hu, H. Gu, X. Sun, J. Wang, J. You. Appl. Phys. Lett. 88 (2006) 193120.

    Google Scholar 

  16. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11 (1999) 1307.

    CAS  Google Scholar 

  17. G.A. Ozin, Adv. Mater. 4 (1992) 612.

    CAS  Google Scholar 

  18. Z.Y. Yuan, B.L. Su, Colloids Surf. 241 (2004) 173.

    CAS  Google Scholar 

  19. R. Ma, K. Fukuda, T. Sazaki, M. Osada, Y. Bando, J. Phys. Chem. B 109 (2005) 6210.

    CAS  Google Scholar 

  20. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, J. Mater. Chem. 14 (2004) 3370.

    CAS  Google Scholar 

  21. P. Pookmanee, G. Rujijanagul, S. Ananta, R.B. Heimann, S. Phanichphant, J. Eur. Ceram. Soc. 24 (2004) 517.

    CAS  Google Scholar 

  22. M. Zhang, Z.S. Jin, J.J. Yung, Z.J. Zhang, J. Molec. Catal. A: Chem. 217 (2004) 203.

    CAS  Google Scholar 

  23. W. Li, C. Ni, H. Lin, C.P. Huang, S.I. Shah, J. App. Phys. 96 (2004) 6663.

    CAS  Google Scholar 

  24. X. Sun, Y. Li, Chem. Eur. J. 9 (2003) 2229.

    CAS  Google Scholar 

  25. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Dalton Trans. 20 (2003) 3898.

    Google Scholar 

  26. J.W. Visser, J. App. Crystallogr. 2 (1969) 89.

    CAS  Google Scholar 

  27. L.J. Tejuca, J.L.G. Fierro (Eds.), Properties and Applications of Perovskite Type Oxides, Marcel Dekker, New York, 1993, p. 85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Durrani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durrani, S.K., Khan, Y., Ahmed, N. et al. Hydrothermal growth of calcium titanate nanowires from titania. JICS 8, 562–569 (2011). https://doi.org/10.1007/BF03249091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03249091

Keywords

Navigation