Skip to main content
Log in

Adaptive delaunay triangulation with multidimensional dissipation scheme for high-speed compressible flow analysis

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Adaptive Delaunay triangulation is combined with the cell-centered upwinding algorithm to analyze in viscid high-speed compressible flow problems. The multidimensional dissipation scheme was developed and included in the upwinding algorithm for unstructured triangular meshes to improve the computed shock wave resolution. The solution accuracy is further improved by coupling an error estimation procedure to a remeshing algorithm that generates small elements in regions with large change of solution gradients, and at the same time, larger elements in other regions. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. Efficiency of the combined procedure is evaluated by analyzing supersonic shocks and shock propagation behaviors for both the steady and unsteady high-speed compressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson J D. Modern Compressible Flow with Historical Prospective[M]. 2nd edition. McGraw-Hill, New York, 1990.

    Google Scholar 

  2. Donea J. A Taylor-Galerkin method for convective transport problems [J]. Internat J Numer Methods in Engng, 1984, 20(1):101–119.

    MathSciNet  MATH  Google Scholar 

  3. Huges T J R. Recent Progress in the Development and Understanding of SUPG Methods with Special Reference to the Compressible Euler and Navier-Stokes Methods in Fluids[M]. John Wiley, New York, 1987, 1261–1275.

    Google Scholar 

  4. Jiang B N, Carey G F. A stable last-squares finite element method for non-linear hyperbolic problems[J]. Internat J Numer Methods in Fluids, 1988, 8(9):933–942.

    MathSciNet  MATH  Google Scholar 

  5. Gnoffo P A. Application of program LUARA to three-dimensional AOTV flow fields [R]. AIAA Paper 86-0565, 1986.

    Google Scholar 

  6. Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes [J]. J. Comput Phys, 1981, 43(2):357–372.

    MathSciNet  MATH  Google Scholar 

  7. Quirk J J. A contribution to the great Riemann solver debate [J]. Internat J Numer Methods in Fluids, 1994, 18(6):555–574.

    MathSciNet  MATH  Google Scholar 

  8. Sanders R, Morano E, Druguet M C. Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics[J]. J. Comput Phys, 1998, 145(2):511–537.

    MathSciNet  MATH  Google Scholar 

  9. Bowyer A. Computing Dirichlet tessellations [J]. Comput J, 1981, 24(2):162–166.

    MathSciNet  Google Scholar 

  10. Watson D F. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes[J]. Comput J, 1981, 24(2): 167–172.

    Google Scholar 

  11. Weatherill N P, Hassan O. Efficient three-dimension Delaunay triangulation with automatic point creation and imposed boundary constraints [J]. Internat J Numer Methods in Engng, 1994, 37(12):2005–2039.

    MATH  Google Scholar 

  12. Karamete B K, Tokdemir T, Ger M. Unstructured grid generation and a simple triangulation algorithm for arbitrary 2-D geometries using object oriented programming[J]. Internat J Numer Methods in Engng, 1997, 40(2):251–268.

    Google Scholar 

  13. Peraire J, Vahdati M, Morgan K, Zienkiewicz O C. Adaptive remeshing for compressible flow computations [J]. J Comput Phys, 1987, 72(2): 449–466.

    MATH  Google Scholar 

  14. Berger M J, Colella P. Local adaptive mesh refinement for shock hydrodynamics [J]. J. Comput Phys, 1989, 82(1):67–84.

    Google Scholar 

  15. Dechaumphai P, Morgan K. Transient thermal-structural analysis using adaptive unstructured remeshing and mesh movement [ A]. In: Thornton E A (ed). Thennal Structures and Materials for High-Speed Flight[ CJ. American Institute of Aeronautics and Astronautics, Washington DC, 1992 ,205 - 228.

    Google Scholar 

  16. Probert J, Hassan O, Peraire J, Morgan K. An adaptive finite element method for transient compressible flows[J]. Internat J Numer Methods in Engng, 1991, 32(5):1145–1159.

    MATH  Google Scholar 

  17. Dechaumphai P, Morgan K. Transient thermal-structural analysis using adaptive unstructured remeshing and mesh movement[A]. In: Thornton E A (ed). Thermal Structures and Materials for High-Speed Flight[C]. American Institute of Aeronautics and Astronautics, Washington D C, 1992, 205–228.

    Google Scholar 

  18. Quirk J J, Hanebutte U R. A parallel adaptive mesh refinement algorithm[R]. ICASE Report 93-63, 1993.

    Google Scholar 

  19. Venkatakrishnan V. A perspective on unstructured grid flow solvers[R]. AIAA paper 95-0667, 1995.

    Google Scholar 

  20. Sun M, Takayama K. Conservative smoothing on an adaptive quadrilateral grid[J]. J Comput Phys, l999, 150(1):143–l50.

    MATH  Google Scholar 

  21. Hirsch C. Numerical Computation of Internal and External Flows [M]. Vol 2. John Wiley & Sons, New York, 1998.

    Google Scholar 

  22. Shyue K M. An efficient shock-capturing algorithm for compressible multicomponent problems[J]. J. Comput Phys, 1998, 142(1):208–242.

    MathSciNet  MATH  Google Scholar 

  23. Harten A. High resolution schemes for hyperbolic conservation laws [J]. J Comput Phys, 1983, 49(3):357–393.

    MathSciNet  MATH  Google Scholar 

  24. Frink N T, Parikh P, Pirzadeh S. A fast upwind solver for the Euler equations on three-dimensional unstructured meshes[R]. AIAA Paper-91-0102; In: 29th Aerospace Sciences Meeting and Exhibit[C]. Reno, Navada, 1991.

    Google Scholar 

  25. Frink N T, Pirzadeh S Z. Tetrahedral finite-volume solutions to the Navier-Stokes equations on comlex configurations[R]. NASA/TM-1998-208961, 1998.

    Google Scholar 

  26. Vekatakrishnan V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J]. J Comput Phys, 1995, 118(1): 120–130.

    Google Scholar 

  27. Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. J. Comput Phys, 1988, 77(2):439–471.

    MathSciNet  MATH  Google Scholar 

  28. Linde T, Roe P L. Robust Eluer codes[R]. AIAA Paper-97-2098; In: 13th Compuations Fluid Dynamics Conference [C]. Snowmass Village, CO, 1997.

    Google Scholar 

  29. Joe B, Simpson R B. Triangular meshes for regions of complicated shape[J]. Internat J Numer Methods in Engng, 1986, 23(5):751–778.

    MATH  Google Scholar 

  30. Frey W H. Selective refinement:a new strategy for automatic node placement in graded triangular meshes[J]. Internat J Numer Methods in Engng, 1987, 24(11):2183–2200.

    MATH  Google Scholar 

  31. Sun M, Takayama K. Error localization in solution-adaptive grid methods [J]. J Comput Phys, 2003, 190(1):346–350.

    MathSciNet  MATH  Google Scholar 

  32. Sod G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. J. Comput Phys, 1978, 27(1):1–31.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dechaumphai.

Additional information

Communicated by ZHOU Zhe-wei

Project supported by the Thailand Research Fund (TRF)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dechaumphai, P., Phongthanapanich, S. Adaptive delaunay triangulation with multidimensional dissipation scheme for high-speed compressible flow analysis. Appl. Math. Mech.-Engl. Ed. 26, 1341–1356 (2005). https://doi.org/10.1007/BF03246239

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03246239

Key words

Chinese Library Classification

Document code

2000 Mathematics Subject Classification

Navigation