Skip to main content
Log in

An overview of protein-DNA and protein-RNA interactions

  • Review
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this review the fundamental question of how does protein-DNA or protein-RNA interactions affect the structures and dynamics of DNA, RNA, and protein is addressed. Two models of human serum albumin (HSA) bindings to calf-thymus DNA and transfer RNA (tRNA) are presented here. In these models the binding sites, stability and structural aspects of DNA-protein and RNA-protein are discussed. Electrostatic binding of DNA or RNA via backbone phosphate group to the positively charged amino acids on the surface of protein is prevailing. Two binding sites with K1 = 4.8 × 105 M−1 and K2 = 6.1 × 104 M−1 for protein-DNA and one binding affinity with K = 1.45 × 104 M−1 for protein-RNA are observed. A partial B to A-DNA transition is observed for protein-DNA complexes, while tRNA remains in A-family structure upon protein interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Harrison, Nature 353 (1991)715.

    CAS  Google Scholar 

  2. B.F. Luisi, in: D.M.J. Lilley (Ed.), DNA-Protein Interaction at High Resolution, In DNA-Protein Structural Interactions, New York, Oxford University Press, 1995, pp.1–48.

    Google Scholar 

  3. N.M. Luscombe, S.E. Austin, H.M. Berman, J.M. Thornton, Genome Biol.1 (2000) 1.

    Google Scholar 

  4. N.M. Luscombe, A. Laskowski, J.M. Thornton, Nucl. Acids Res. 29 (2001) 2860.

    CAS  Google Scholar 

  5. M. Yonezawa, N. Doi, Y. Kawahashi, T. Higashinakagawa, H. Yanagawa, Nucl. Acids Res. 31 (2003) e118, 1.

    Google Scholar 

  6. I.V. Smolina, V.V. Demidov, M.D. Frank-Kamenetskii, J. Mol. Biol. 326 (2003) 1113.

    CAS  Google Scholar 

  7. T. Namanbhoy, A.J. Morales, A.T. Abraham, C.S. Vortler, R. Giege, P. Schimmel, Nature Struct. Biol. 8 (2001) 344.

    Google Scholar 

  8. D. Moras, Curr. Opin. Struct. Biol. 2 (1998) 138.

    Google Scholar 

  9. G. Varani, K. Nagai, Annu. Rev. Biophys. Biomol. Struct. 27 (1998) 407.

    CAS  Google Scholar 

  10. S. Jones, D.T.A. Daley, N.M. Luscombe, H.M. Berman, J.T. Thornton, Nucl. Acids Res. 29 (2001) 943.

    CAS  Google Scholar 

  11. G.C. Foulds, H. Etzkom, Nucleic Acids Res. 26 (1998) 4304.

    CAS  Google Scholar 

  12. C. Li, L.M. Martin, Anal. Biochem. 263 (1998) 72.

    CAS  Google Scholar 

  13. J. Xian, M.G. Harrington, E.H. Davidson, Proc. Natl. Acad. Sci. USA 93 (1996) 86.

    CAS  Google Scholar 

  14. T. Guszcynski, T.D. Copeland, Anal. Biochem. 260 (1998) 212.

    Google Scholar 

  15. T. Peters, All About Albumin, Biochemistry, Genetics and Medical Application, Academic Press, San Diego, 1996.

    Google Scholar 

  16. D.C. Carter, J.X. Ho, Adv. Protein Chem. 45 (1994) 153.

    CAS  Google Scholar 

  17. S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Protein Eng. 12 (1999) 439.

    CAS  Google Scholar 

  18. H.M. He, D.C. Carter, Nature 358 (1992) 209.

    CAS  Google Scholar 

  19. T. Peters, Adv. Protein Chem. 37 (1985) 161.

    CAS  Google Scholar 

  20. S. Curry, P. Brick, N.P. Frank, Biochim. Biophys. Acta 1441 (1999) 131.

    CAS  Google Scholar 

  21. I. Petitpas, T. Grune, A.A. Battacharya, S. Curry, J. Mol. Biol. 314 (2001) 955.

    CAS  Google Scholar 

  22. L. Painter, M.M. Harding, P.J. Beeby, J. Chem. Soc. Perkin Trans 18 (1998) 3041.

    Google Scholar 

  23. M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954) 3047.

    CAS  Google Scholar 

  24. R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, Biochem. Biophys. Res. Commun. 271 (2000) 731.

    CAS  Google Scholar 

  25. S. Alex, P. Dupuis, Inorg. Chim. Acta 157 (1986) 271.

    Google Scholar 

  26. A. Ahmed Ouameur, H.A. Tajmir-Riahi, J. Biol. Chem. 279 (2004) 42041.

    CAS  Google Scholar 

  27. M.I. Klotz, L.D. Hunston, Biochemistry 10 (1971) 3065.

    CAS  Google Scholar 

  28. M.I. Klotz, Science 217 (1982) 1247.

    CAS  Google Scholar 

  29. A. Ahmed Ouameur, R. Marty, J.F. Neault, H.A. Tajmir-Riahi, DNA&Cell Biology 23 (2004) 783.

    CAS  Google Scholar 

  30. A. Ahmed Ouameur, E. Mangier, R. Rouillon, R. Carpentier, H.A. Tajmir-Riahi, Biopolymers 73 (2004) 503.

    Google Scholar 

  31. M. Loprete, K.A. Hartman, Biochemistry 32 (1993) 4077.

    CAS  Google Scholar 

  32. E. Taillandier, J. Liquier, Methods Enzymol. 211 (1992) 307.

    CAS  Google Scholar 

  33. E.B. Starikov, M.A. Semenov, V.Y. Maleeve, A.I. Gasan, Biopolymers 31 (1991) 255.

    CAS  Google Scholar 

  34. R. Ahmad, H. Arakawa, H.A. Tajmir-Riahi, Biophys. J. 84 (2003) 2460.

    CAS  Google Scholar 

  35. S.B. Dev, L. Walters, Biopolymers 29 (1990) 289.

    CAS  Google Scholar 

  36. A. Podesta, M. Indrieri, D. Brogioli, G.S. Manning, P. Milani, R. Guerra, L. Finzi, D. Dunlap, Biophys. J. 89 (2005) 2558.

    CAS  Google Scholar 

  37. S. Krimm, J. Bandekar, Adv. Protein Chem. 38 (1986) 181.

    CAS  Google Scholar 

  38. D.M. Byler, H. Susi, Biopolymers 25 (1986) 469.

    CAS  Google Scholar 

  39. E. Bramanti, E. Benedetti, Biopolymers 38 (1996) 639.

    CAS  Google Scholar 

  40. H.A. Tajmir-Riahi, J.F. Neault, M. Naoui, FEBS Lett. 370 (1995) 105.

    CAS  Google Scholar 

  41. H.A. Tajmir-Riahi. J. Iran. Chem. Soc. 2 (2005) 78.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Tajmir-Riahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tajmir-Riahi, H.A. An overview of protein-DNA and protein-RNA interactions. JICS 3, 297–304 (2006). https://doi.org/10.1007/BF03245950

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03245950

Keyword

Navigation