Skip to main content
Log in

Protein–RNA interactions: structural biology and computational modeling techniques

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

RNA-binding proteins are functionally diverse within cells, being involved in RNA-metabolism, translation, DNA damage repair, and gene regulation at both the transcriptional and post-transcriptional levels. Much has been learnt about their interactions with RNAs through structure determination techniques and computational modeling. This review gives an overview of the structural data currently available for protein–RNA complexes, and discusses the technical issues facing structural biologists working to solve their structures. The review focuses on three techniques used to solve the 3-dimensional structure of protein–RNA complexes at atomic resolution, namely X-ray crystallography, solution nuclear magnetic resonance (NMR) and cryo-electron microscopy (cryo-EM). The review then focuses on the main computational modeling techniques that use these atomic resolution data: discussing the prediction of RNA-binding sites on unbound proteins, docking proteins, and RNAs, and modeling the molecular dynamics of the systems. In conclusion, the review looks at the future directions this field of research might take.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamala KP, Martin-Alarcon DA, Boyden ES (2016) Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci 113(19):E2579–E2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allain FHT, Howe PWA, Neuhaus D, Varani G (1997) Structural basis of the RNA-binding specificity of human U1A protein. EMBO J 16:5764–5774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahadur RP, Kannan S, Zacharias M (2009) Binding of the bacteriophage P22 N-peptide to the boxB RNA motif studied by molecular dynamics simulations. Biophys J 97:3139–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barik A, Bahadur RPR (2014) Hydration of protein–RNA recognition sites. Nucleic Acids Res 42:10148–10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barik A, Nithin C, Karampudi NBR et al (2015) Probing binding hot spots at protein–RNA recognition sites. Nucleic Acids Res 44(2):e9. doi:10.1093/nar/gkv876

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckmann BM, Horos R, Fischer B et al (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann BM, Castello A, Medenbach J (2016) The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflügers Arch – Eur J Physiol 468(6):1029–1040

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blake JA, Christie KR, Dolan ME et al (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056. doi:10.1093/nar/gku1179

    Article  CAS  Google Scholar 

  • Callaway E (2015) The revolution will not be crystallized. Nature 525:172–174

    Article  CAS  PubMed  Google Scholar 

  • Carlomagno T (2014) Present and future of NMR for RNA–protein complexes: a perspective of integrated structural biology. J Magn Reson 241:126–136

    Article  CAS  PubMed  Google Scholar 

  • Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406

    Article  CAS  PubMed  Google Scholar 

  • Chauvot de Beauchene I, de Vries SJ, Zacharias M (2016) Binding site identification and flexible docking of single stranded RNA to proteins using a fragment-based approach. PLoS Comput Biol 12:1–21

    Article  Google Scholar 

  • Chen Z, Stauffacher C, Li Y et al (1989) Protein–RNA interactions in an icosahedral virus at 3.0 A resolution. Science 245:154–159

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Sargsyan K, Wright JD, et al. (2014) Identifying RNA-binding residues based on evolutionary conserved structural and energetic features. Nucleic Acids Res 42(3):e15

    Article  CAS  PubMed  Google Scholar 

  • Cook KB, Hughes TR, Morris QD (2015) High-throughput characterization of protein–RNA interactions. Brief Funct Genomics 14:74–89

    Article  PubMed  Google Scholar 

  • Daubner GM, Cléry A, Allain FHT (2013) RRM–RNA recognition: NMR or crystallography…and new findings. Curr Opin Struct Biol 23:100–108

    Article  CAS  PubMed  Google Scholar 

  • Dror R, Dirks R, Grossman J et al (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  • Duss O, Michel E, Yulikov M et al (2014) Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature 509:588–592

    Article  CAS  PubMed  Google Scholar 

  • Ellis JJ, Jones S (2008) Evaluating conformational changes in protein structures binding RNA. Proteins 70:1518–1526

    Article  CAS  PubMed  Google Scholar 

  • Estarellas C, Otyepka M, Koča J et al (2015) Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochim Biophys Acta 1850:1072–1090

    Article  CAS  PubMed  Google Scholar 

  • Fischer N, Neumann P, Konevega AL et al (2015) Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520:567–570

    Article  PubMed  Google Scholar 

  • Fulle S, Gohlke H (2010) Molecular recognition of RNA: challenges for modelling interactions and plasticity. J Mol Recognit 23:220–231. doi:10.1002/jmr.1000

    CAS  PubMed  Google Scholar 

  • Gabb HA, Jackson RM, Sternberg MJ (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272:106–120

    Article  CAS  PubMed  Google Scholar 

  • Glaeser RM (2016) How good can cryo-EM become? Nat Methods 13:28–32

    Article  CAS  PubMed  Google Scholar 

  • Grabowski M, Niedzialkowska E, Zimmerman MD, Minor W (2016) The impact of structural genomics: the first quindecennial. J Struct Funct Genom 17:1–16

    Article  CAS  Google Scholar 

  • Hawkes PW (2009) Aberration correction past and present. Philos Trans R Soc A Math Phys Eng Sci 367:3637–3664

    Article  CAS  Google Scholar 

  • Hennig J, Sattler M (2014) The dynamic duo: Combining NMR and small angle scattering in structural biology. Protein Sci 23:669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SY, Zou X (2014) A knowledge-based scoring function for protein–RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res 42:1–12

    Article  CAS  Google Scholar 

  • Katchalski-Katzir E, Shariv I, Eisenstein M et al (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke A, Doudna JA (2004) Crystallization of RNA and RNA-protein complexes. Methods 34:408–414

    Article  CAS  PubMed  Google Scholar 

  • Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP (2015) Structure of the human 80S ribosome. Nature 520:640–645

    Article  CAS  PubMed  Google Scholar 

  • Kligun E, Mandel-Gutfreund Y (2015) The role of RNA conformation in RNA–protein recognition. RNA Biol 12:720–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Krauss IR, Merlino A, Vergara A, Sica F (2013) An overview of biological macromolecule crystallization. Int J Mol Sci 14:11643–11691

    Article  PubMed Central  Google Scholar 

  • Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM density maps. Nat Methods 11:63–65

    Article  CAS  PubMed  Google Scholar 

  • Kwan AH, Mobli M, Gooley PR et al (2011) Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 278:687–703

    Article  CAS  PubMed  Google Scholar 

  • Lapinaite A, Simon B, Skjaerven L et al (2013) The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 502:519–523

    Article  CAS  PubMed  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackereth CD, Sattler M (2012) Dynamics in multi-domain protein recognition of RNA. Curr Opin Struct Biol 22:287–296

    Article  CAS  PubMed  Google Scholar 

  • Mackereth CD, Madl T, Bonnal S et al (2011) Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 475:408–411

    Article  CAS  PubMed  Google Scholar 

  • Maetschke SR, Yuan Z (2009) Exploiting structural and topological information to improve prediction of RNA-protein binding sites. BMC Biochem 10:341

    Google Scholar 

  • McNicholas S, Potterton E, Wilson KS, Noble MEM (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr Sect D: Biol Crystallogr 67:386–394

    Article  CAS  Google Scholar 

  • Miao Z, Westhof E (2015a) Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score. Nucleic Acids Res 43:5340–5351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Z, Westhof E (2015b) A large-scale assessment of nucleic acids binding site prediction programs. PLoS Comput Biol 11:1–23

    Article  Google Scholar 

  • Milne JLS, Borgnia MJ, Bartesaghi A et al (2013) Cryo-electron microscopy — a primer for the non-microscopist. FEBS J 280:28–45

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Spriggs RV, Nakamura H, Jones S (2010) PiRaNhA: a server for the computational prediction of RNA-binding residues in protein sequences. Nucleic Acids Res 38(Suppl):W412–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obayashi E, Oubridge C, Pomeran D, Nagai K (2007) Crystallization of RNA–protein complexes. In: Macromolecular crystallography protocols: Volume 1: Preparation and crystallization of macromolecules. Methods in molecular biology. Springer, Berlin Heidelberg, pp 259–276

    Google Scholar 

  • Oubridge C, Ito N, Teo CH et al (1995) Crystallisation of RNA-protein complexes. II. The application of protein engineering for crystallisation of the U1A protein–RNA complex. J Mol Biol 249:409–423

    Article  CAS  PubMed  Google Scholar 

  • Perez-Cano L, Fernandez-Recio J (2010) Optimal protein–RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins. Proteins Struct Funct Bioinf 78:25–35

    Article  CAS  Google Scholar 

  • Puton T, Kozlowski L, Tuszynska I et al (2012) Computational methods for prediction of protein–RNA interactions. J Struct Biol 179:261–268. doi:10.1016/j.jsb.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Chen Y, Wu M et al (2010) Induced fit or conformational selection for RNA/U1A folding. RNA 16:1053–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Shen Y (2015) RNA-binding residues prediction using structural features. BMC Bioinf 16:249

    Article  Google Scholar 

  • Ritchie DW, Kemp GJL (2000) Protein docking using spherical polar fourier correlations. Proteins Struct Funct Genet 39:178–194

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:363–367

    Article  Google Scholar 

  • Shazman S, Elber G, Mandel-Gutfreund Y (2011) From face to interface recognition: a differential geometric approach to distinguish DNA from RNA binding surfaces. Nucleic Acids Res 39:7390–7399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y (2014) A glimpse of structural biology through X-ray crystallography. Cell 159:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Šponer J, Otyepka M, Banáš P et al (2012) Molecular dynamics simulations of RNA molecules. Innov Biomol Model Simulat 2:129–155

    Article  Google Scholar 

  • Sun M, Wang X, Zou C et al (2016) Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors. BMC Bioinf 17:231

    Article  Google Scholar 

  • Terribilini M, Sander JD, Lee JH et al (2007) RNABindR: a server for analyzing and predicting RNA-binding sites in proteins. Nucleic Acids Res 35:1–7

    Article  Google Scholar 

  • Tiwari AK, Srivastava R (2014) A survey of computational intelligence techniques in protein function prediction. Int J Proteomics 2014:845479

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuszynska I, Bujnicki JM (2011) DARS-RNP and QUASI-RNP: New statistical potentials for protein–RNA docking. BMC Bioinf 12:348

    Article  CAS  Google Scholar 

  • Tuszynska I, Magnus M, Jonak K et al (2015) NPDock: a web server for protein–nucleic acid docking. Nucleic Acids Res 43:W425–W430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 Web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725

    Article  PubMed  Google Scholar 

  • Walia RR, Caragea C, Lewis BA et al (2012) Protein–RNA interface residue prediction using machine learning: an assessment of the state of the art. BMC Bioinf 13:1–20

    Article  Google Scholar 

  • Zhao H, Yang Y, Janga SC et al (2014) Prediction and validation of the unexplored RNA-binding protein atlas of the human proteome. Proteins 82:640–647

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SJ was funded by the Scottish Government’s Rural and Environment Science and Analytical Services Division (RESAS) research programme. SJ would like to thank the editors for the invitation to contribute to this special issue and to wish a very happy 80th birthday to Professor Don Winzor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Jones.

Ethics declarations

Conflict of Interest

Susan Jones declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

This article is part of a Special Issue on ‘Analytical Quantitative Relations in Biochemistry’ edited by Damien Hall and Stephen Harding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, S. Protein–RNA interactions: structural biology and computational modeling techniques. Biophys Rev 8, 359–367 (2016). https://doi.org/10.1007/s12551-016-0223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-016-0223-9

Keywords

Navigation