Skip to main content
Log in

The creep of intermetallics and their composites

  • Intermetallic and Composite
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article evaluates the creep behavior of nickel aluminides, titanium aluminides, and molybdenum disilicides and their composites as a function of stress and temperature. Significant improvements in creep strength were achieved in NiAl by the addition of HfC dispersoids, and in MoSi2 and its alloys through the addition of SiC whiskers or particulates. On the basis of creep resistance, molybdenum disilicide alloys and their composites have a high potential for application at temperatures greater than 1,000°C, and they are also potential competitors to more brittle ceramic-ceramic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Sauthoff, Z. Metallkde, 80 (1989), p. 337.

    CAS  Google Scholar 

  2. D.M. Shah and D.N. Duhl, High-Temperature Ordered Intermetallic Alloys II, ed. N.S. Stoloff et al. (Pittsburgh, PA: MRS, 1987), p. 411.

    Google Scholar 

  3. I. Jung and G. Sauthoff, Z. Metallkde., 77 (1989), p. 484.

    Google Scholar 

  4. R.L. Fleischer and R.D. Fields, “Development of Potential of Advanced Intermetallic Materials,” WRDC-TR-90-4046 (WrightPatterson Air Force Base, OH: Wright Research Development Center, 1990).

    Google Scholar 

  5. P.L. Martin, M.G. Mendiratta, and H.A. Lipsitt, Metall. Trans., 14A (1983), p. 2170.

    CAS  Google Scholar 

  6. S.L. Kampe, J.D. Bryant, and L. Christodolou, Metall. Trans, 22A (1991), p. 447.

    CAS  Google Scholar 

  7. R.W. Hayes and B. London, Acta Metall. Mater., 40 (1992), p. 2167.

    CAS  Google Scholar 

  8. K. Sadananda et al., High-Temperature Ordered Intermetallic Alloys IV, ed. L. Johnson, D.P. Pope, and J.O. Stiegler (Pittsburgh, PA: MRS, 1991), pp. 1019–1025.

    Google Scholar 

  9. J.D. Whittenberger et al., J. Mater. Res., 4 (1989), p. 1164.

    CAS  Google Scholar 

  10. J.D. Whittenberger, J. Mater. Res., 23 (1988), p. 235.

    CAS  Google Scholar 

  11. A.K. Vasudevan and J.J. Petrovic, Mater. Sci. Eng, A155 (1992), pp. 1–I8.

    CAS  Google Scholar 

  12. A.K. Vasudevan, J.J. Petrovic, and K. Sadananda, 12th Risø Conf., ed. N. Hasen et al. (Denmark: Risø, 1991), p. 707.

    Google Scholar 

  13. W.S. Gibbs, J.J. Petrovic, and R.E. Honnel, Ceram. Eng. Sci. Proc. 8 (1987), p. 645.

    Google Scholar 

  14. J.J. Petrovic et al., Mater. Sci. Eng, A155 (1992), pp. 259–266.

    CAS  Google Scholar 

  15. R.M. Akin, Jr., Ceram. Eng. Sci. Proc., 12 (1991), pp. 1643–55.

    Google Scholar 

  16. K. Sadananda et al., Ceram. Eng. Sci. Proc., 12 (1991), pp. 1671–1678.

    CAS  Google Scholar 

  17. K. Sadananda et al., Mater. Sci. Eng., A155 (1992), pp. 227–239.

    CAS  Google Scholar 

  18. K. Sadananda and C.R. Feng, Mater. Sci. Eng., submitted for publication.

  19. K. Sadananda and C.R. Feng, Advanced Composites, ed. T. Chandra (Warrendale, PA: TMS, to be published).

  20. S.M. Weiderhorn et al., Mat. Sci. Eng., A155 (1992), pp. 209–216.

    Google Scholar 

  21. S. Bose, Mat. Sci. Eng., A155 (1992), pp. 217–226.

    CAS  Google Scholar 

  22. H.J. Hockey et al., J. Mater. Sci., 26 (1991), p. 3931.

    CAS  Google Scholar 

  23. Mathew J. Donachie, ed., Superalloys-Source Book (Metals Park, OH: ASK 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadananda, K., Feng, C.R. The creep of intermetallics and their composites. JOM 45, 45–48 (1993). https://doi.org/10.1007/BF03223219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223219

Keywords

Navigation