Skip to main content
Log in

The status of chemical sensors for hot-dip galvanization

  • Sensor
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Alloying elements are added to the zinc used in the hot-dip galvanization of sheet steel to control the properties and appearance of the resulting coating. For example, aluminum is added to improve the corrosion resistance and adherence of the coating. Other additions, such as antimony, are added to control the grain size and, thus, the appearance of the coating. The concentrations of these alloying elements may change during the process, either deliberately according to product specifications or due to factors such as preferential oxidation. These changes may require replenishment of a depleted alloying element or adjustments in other processing parameters to maintain optimal efficiency. Intelligent adjustments require knowledge of the alloy composition, which requires inline measurement of the concentrations of alloying elements. This article presents recent developments in chemical sensors for use in hot-dip galvanization. In particular, electrochemical sensors for measuring the concentrations of aluminum and antimony in molten zinc are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Jagannathan, “Emerging Technologies in the Hot-Dip Coating of Automotive Sheet Steel,” JOM, 45 (8) (1993), pp. 48–51.

    Google Scholar 

  2. A.R.P. Ghuman and J.I. Goldstein, “Reaction Mechanisms for the Coatings Formed During the Hot Dipping of Iron in 0 to 10 Pct Al-Zn Baths at 450°C to 700°C,” Metall. Trans., 2 (10) (1971), pp. 2903–2914.

    CAS  Google Scholar 

  3. F.A. Fasoyinu and F. Weinberg, “Spangle Formation in Galvanized Sheet Steel Coatings,” Metall. Trans. B, 21B (3) (1990), pp. 549–558.

    CAS  Google Scholar 

  4. Y. Yoshitaka, M. Arai, and T. Nakamori, “Effect of Al in Molten Zinc on Adhesion Strength in Galvannealed Steel,” Tetsu-to Nagane, 80 (8) (1994), pp. 67–72.

    Google Scholar 

  5. L.A. Rocha and M.A. Barbosa, “Microstructure, Growth Kinetics, and Corrosion Resistance of Hot-Dip Galvanized Zn-5% Al Coatings” Corrosion, 47 (7) (1991, pp. 536–541.

    CAS  Google Scholar 

  6. H. Yamaguchi and Y. Hisamatsu, “Reaction of Dross Formation in Continuous Galvanizing,” Tetsu-to Hagane, 60 (1) (1974), pp. 96–103.

    CAS  Google Scholar 

  7. N.-Y. Tang, “Refined 450°C Isotherm of Zn-Fe-Al Phase Diagram,” Mater. Sci. Tech., 11 (9) (1995), pp. 870–873.

    CAS  Google Scholar 

  8. K.L. Un et al., “Growth Behavior and Corrosion Resistance of 5% Al-Zn Coating,” Corrosion, 49 (9) (1993), pp. 759–762.

    Google Scholar 

  9. P.G. Caceres et al., “Mechanisms of Formation and Growth of Intennetallic Layer During Hot Dipping of Iron in Zn-3AI and Zn-6AI Baths,” Mater. Sci. Tech., 2 (8) (1986), pp. 871–877.

    CAS  Google Scholar 

  10. J.H. Selverian, A.R. Marder, and M.R. Notis, “The Reaction Between Solid Iron and Al-Zn Baths,” Metall. Trans. A, 19A (5) (1988), pp. 1193–1203.

    CAS  Google Scholar 

  11. G.J. Harvey and P.D. Mercer, “Aluminum-Rich Alloy Layers Formed During the Hot Dip Galvanizing of Low Carbon Steel,” Metall. Trans., 4 (2) (1973), pp. 619–621.

    CAS  Google Scholar 

  12. S.J. Makirnattila et al., “The Effect of Intermetallic Layer on the Adherence of a Hot-Dip Galvanized Coating,” Scripta Metall., 19 (2) (1985), pp. 211–214.

    Google Scholar 

  13. R.F. Lynch, “Galfan Stretches Standard Performance,” ASTM Standardization News, 18 (3) (1990), pp. 26–30.

    Google Scholar 

  14. G.J. McManus, “Galfan Coating Finds Its Niche,” Iron Age, 8 (9) (1992), pp. 43–44.

    Google Scholar 

  15. H.P. Ferrett, “New Developments in the Application of Galfan in the Steel Wire Industry,” Wire J. Int., 20 (9) (1987), pp. 178–189.

    Google Scholar 

  16. H.E. Townsend et al., “Hot-Dip Coated Sheet Steels-A Review,” Materials Performance, 25 (8) (1986), pp. 36–46.

    CAS  Google Scholar 

  17. S.-I. Pyun et al., “The Anodic Behaviour of Hot-Galvanized Zinc Layer in Alkaline Solution,” Corrosion Science, 36 (5) (1994), pp. 827–835.

    CAS  Google Scholar 

  18. K.-L. Lin, C.-F. Yang, and J.-T. Lee, “Correlation of Microstructure with Corrosion and Electrochemical Behavior of the Batch-Type Hot-Dip Al-Zn Coatings: Part I. Zn and 5% Al-Zn Coatings,” Corrosion, 47 (1) (1991), pp. 9–17.

    CAS  Google Scholar 

  19. D.R Salinas and J.B. Bessone, “Electrochemical Behavior of Al-5%Zn-0.1%Sn Sacrificial Anode in Aggressive Media: Inf1uence of Its Alloying Elements and the Solidification Structure,” Corrosion, 47 (9) (1991), pp. 6–74.

    Google Scholar 

  20. T.-P. Cheng et al., “Electrochemical Behavior of Galvanized Al-Zn Coatings in Saturated Ca(OH)2 Solution,” Corrosion, 47 (6) (1991), pp. 436–442.

    CAS  Google Scholar 

  21. K.-L. Lin, C.-F. Yang, and J.-T. Lee, “Correlation of Microstructure with Corrosion and Electrochemical Behavior of the Batch-Type Hot-Dip Al-Zn Coatings: Part II. 55% Al-Zn Coatings, Corrosion, 47 (1) (1991), pp. 17–23.

    CAS  Google Scholar 

  22. H.E. Townsend and C.F. Meitzner, “Corrosion Resistance of Zinc/4% Aluminum and Zinc/7% Aluminum Alloy Coatings Compared to Zinc and Zinc/54% Aluminum Alloy Coatings,” Materials Performance, 22 (1) (1983) p. 54.

    CAS  Google Scholar 

  23. H.E. Townsend and J.C. Zoccola, “Atmospheric Corrosion Resistance of 55% Al-Zn Coated Sheet Steel: 13 Year Test Results,” Materials Performance, 18 (10) (1979), pp. 13–20.

    CAS  Google Scholar 

  24. H.E. Townsend and A.R. Borzillo, “Twenty-Year AtmospheriC Corrosion Test of Hot-Dip Coated Sheet Steel,” Materials Performance, 26 (7) (1987), pp. 37–41.

    CAS  Google Scholar 

  25. F.A. Fasoyinu and F. Weinberg, “The Surface-Topography of Sheet Steel Galvanized Coatings,” Can. Metall. Quart., 32 (2) (1993), pp. 185–192.

    CAS  Google Scholar 

  26. S. Chang and J.C. Shin, “Effect of Antimony Addition on Hot Dip Galvanized Coating,” Corrosion, 36 (8) (1994), pp. 1425–1436.

    CAS  Google Scholar 

  27. D. Jaffrey, J.D. Browne, and T.J. Howard, “The Cracking of Zinc Spangles on Hot-dipped Galvanized Steel,” Metall. Trans. B, 11B (6) (1980), pp. 631–635.

    CAS  Google Scholar 

  28. H.E. Biber, “Scanning Auger Microprobe Study of Hot-Dipped Regular-Spangle Galvanized Steel: Part I. Surface Composition of As-Produced Sheet,” Metall. Trans. A, 19A (6) (1988), pp. 1603–1608.

    CAS  Google Scholar 

  29. R. Gutenberg, J. Lait, and F. Weinberg, “Changing Al and Ph Bath Concentrations in Galvanized Sheet Steel,” Can. Metall. Quart., 29 (4) (1990), pp. 307–312.

    CAS  Google Scholar 

  30. F.E. Goodwin, M.P. Roman, and J.J. Hogan, “Recent Developments in Galfan-Coated Wire,” Wire J. Int., 23 (10) (1990), pp. 48–64.

    CAS  Google Scholar 

  31. H.E. Biber, “Scanning Auger Microprobe Study of Hot-Dipped Regular-Spangle Galvanized Steel: Part I. Surface Composition of Chromated Sheet,” Metall. Trans. A, 19A (6) (1988), pp. 1609–1612.

    CAS  Google Scholar 

  32. J.W. Fergus, “Electrochemical Magnesium Sensors for Aluminum Processing,” JOM, 47 (11) (1995), pp. 36–41.

    Article  CAS  Google Scholar 

  33. J.W. Fergus and S. Hui, “Solid Electrolyte Sensor for Measuring Magnesium in Molten Aluminum,” Metall. Mater. Trans. B, 26B (6) (1995), pp. 1289–1291.

    CAS  Google Scholar 

  34. B.L. Tiwari and B.J. Howie, “Determination of Magnesium in Molten Aluminum Alloy Using an Electrochemical Sensor,” Light Metals 1989, ed. P.G. Campbell (Warrendale, PA: TMS, 1989), pp. 895–902.

    Google Scholar 

  35. B.L. Tiwari and B.J. Howie, “Electrochemical Probe for Measuring Magnesium Concentration in Molten Aluminum,” U.S. patent 4,601,810 (22 July 1986).

    Google Scholar 

  36. S. Larose, A. Dubreuil, and A.D. Pelton, “Solid Electrolyte Probes for Magnesium, Calcium and Strontium in Molten Aluminum,” Solid State Ionics, 47 (1991), pp. 287–295.

    CAS  Google Scholar 

  37. X.Y. Yan, D.E. Langberg, and W.J. Rankin, “Thermodynamic Properties of Zinc-Rich Zinc-Aluminum Melts,” Metall. Trans. B, 24B (6) (1993), pp. 1037–1044.

    CAS  Google Scholar 

  38. S. Yamaguchi et al., “Development of Aluminum Sensor for Molten Zinc Bath Using Composite Salt Electrolyte,” CAMP-ISIJ, 4 (1991), p. 669.

    Google Scholar 

  39. S. Yamaguchi et al., “Development of Al Sensor in Zn Bath for Continuous Galvanizing Processes,” CALVATECH ′95 Conf. Proc. (1995), pp. 647–655.

    Google Scholar 

  40. D. Fray, “Solid Electrolytes and the Analysis of Molten Metals,” Chem. Ind. (15 June 1995), pp. 445–448.

    Google Scholar 

  41. S. Matsubara et al., “Determination of Aluminum Sensor for Molten Zinc Bath Using Zirconia Solid Electrolyte,” Tetsu-to Hagane, 79 (2) (1993), pp. 180–186.

    CAS  Google Scholar 

  42. T.C. Wilder, “Method for Determining the Concentration of a Metal in an Alloy Melt,” U.S. patent 3,816,269 (11 June 1974).

    Google Scholar 

  43. G.B. Barbi, “ThermodynamiC Functions by E.M.F. Measurements on Solid Galvanic Cells in Non-Stationary Conditions: System Al + Al2O3,” Trans. Faraday Soc., 62 (1966), pp. 1589–1595.

    CAS  Google Scholar 

  44. T.A. Ramanarayanan and W.L. Worrell, “Limitations in the Use of Solid State Electrochemical Cells for High-Temperature Equilibrium Measurements,” Can. Metall. Quart., 13 (2) (1974), pp. 325–329.

    CAS  Google Scholar 

  45. B.C.H. Steele and C.B. Alcock, “Factors Influencing the Performance of Solid Oxide Electrolytes in High-Temperature Thermodynamic Measurements,” Trans. Metall. Soc. AIME, 233 (1965), pp. 1359–1367.

    CAS  Google Scholar 

  46. T.H. Etsell and S.N. Flengas, “The Electrical Properties of Solid Oxide Electrolytes,” Chem. Rev., 70 (3) (1970), pp. 339–376.

    CAS  Google Scholar 

  47. C.B. Alcock and B. Li, “Electrochemical Sensor for Determining the Level of a Certain Metal in Metals and Alloys,” U.S. patent 5,256,272 (26 October 1993).

    Google Scholar 

  48. S. Matsubara et al., “Determination of Aluminum Content in Molten Zinc by the E.M.F. Method Using CaF, Solid Electrolyte,” J. Japan. Inst. Metals, 58 (1994), pp. 929–935.

    CAS  Google Scholar 

  49. J.W. Fergus and S. Hui, unpublished work.

  50. L.B. Rubin, K.L. Komarek, and E. Miller, “thermodynamic Properties and Compound Cluster Formation in Liquid Zinc-Antimony Alloys,” Z. Metallkde., 65 (3) (1974), pp. 191–199.

    CAS  Google Scholar 

  51. B. Onderka and K. Fitzner, “Thermodynamic Study of Sb-Te Alloys by EMF Measurements Using Solid Zirconia Electrolyte,” Z. Metallkde., 86 (5) (1995), pp. 313–318.

    CAS  Google Scholar 

  52. X.Y. Yan, D.E. Langberg, and W.J. Rankin, “Preparation and Characterization of Polycrystalline Lead-Exchanged Sodium Beta″-Alumina and Its Use as a Ph2+ Ion-Conducting Electrolyte for Galvanic Cells,” Metall. Mater. Trans. B, 26B (5) (1995), pp. 1005–1011.

    CAS  Google Scholar 

  53. G.M. Kale, A.J. Davidson, and D.J. Fray, “Solid-State Sensor for Measuring Antimony in Non-Ferrous Metals,” Solid State Ionics (June 1996), in press.

    Google Scholar 

  54. D.J. Fray and R.V. Kumar, “Method for Measuring a Minor Element in a Molten Metal,” U.S. patent 5,192,404 (09 March 1993).

    Google Scholar 

  55. J.W. Fergus and S. Hui, “Solid Electrolyte Based Galvanic Cell for Measuring the Antimony Concentration in Molten Zinc,” J. Electrochern. Soc. 143 (8) (1996) pp. 2498–2502.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fergus, J.W. The status of chemical sensors for hot-dip galvanization. JOM 48, 38–41 (1996). https://doi.org/10.1007/BF03223072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223072

Keywords

Navigation