Skip to main content
Log in

The dry etching of group III-nitride wide-bandgap semiconductors

  • Semiconductor
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fabricating device structures from the III-N semiconductors requires dry-etching processes that leave smooth surfaces with stoichiometric composition after transferring patterns with vertical sidewalls. Results obtained by standard methods are summarized, and the extent of concomitant ion bombardment damage is assessed. A new low-damage technique—low-energy electron- enhanced etching—that avoids ion bombardment altogether is described, and early results for III-N materials are summarized. Etching issues critical in forming contacts and fabricating laser facets and mirrors are highlighted, and some prospects for future work are also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Strite, M.E. Lin, and H. Morkoc, Thin Solid Films, 231 (1993), p. 197.

    CAS  Google Scholar 

  2. S. Strite and H. Morkoc, J. Vac. Sci. Technol., B10 (1992), p. 1237.

    Google Scholar 

  3. S. Strite, “The III-V Nitride Semiconductors for Blue Light Emission,” Advances in Solid State Physics 34, ed. R. Helbig (Braunschweig/Wiesbaden, Germany: Vieweg, 1995), pp. 79–95.

    Google Scholar 

  4. J.R. Mileham et al., Appl. Phys. Lett, 67 (1995), p. 1119.

    CAS  Google Scholar 

  5. M.S. Minsky, A.M. While, and E.L. Hu, Appl. Phys. Lett, 68 (1996), p. 1531.

    CAS  Google Scholar 

  6. H.P. Gillis et al., Appl. Phys. Lett., 66 (1995), p. 2475.

    CAS  Google Scholar 

  7. H.P. Gillis et al., Appl. Phys. Lett., 68 (1996), p. 2255.

    CAS  Google Scholar 

  8. H.P. Gillis et al., “Low Energy Electron-Enhanced Etching of GaN in a Hydrogen d.c. Plasma,” submitted to J. Electrochem. Soc.

  9. R.T. Leonard and S.M. Bedair, App. Phys. Lett., 68 (1996), p. 794.

    CAS  Google Scholar 

  10. M.A. Lieberman and A.J. Lichtaenberg, Principles of Plasma Discharges and Materials Processing (New York: Wiley, 1994), Chapters 1, 11-15.

    Google Scholar 

  11. J.W. Coburn and H.F. Winters, J. Appl. Phys., 50 (1979), p. 3189.

    CAS  Google Scholar 

  12. H.P. Gillis and W.J. Gignac, J. Vac. Sci. Technol., A4 (1986), p. 696.

    Google Scholar 

  13. M.W. Geis et al., J. Vac. Sci. Technol., 19 (1981), p. 1390.

    CAS  Google Scholar 

  14. J.M.E. Harper, J.J. Cuomo, and H.R. Kaufman, J. Vac. Sci. Technol., 21 (1982), p. 737.

    CAS  Google Scholar 

  15. H.P. Gillis, J.L. Clemons, and J.P. Chamberlain, J. Vac. Sci. Technol., BI0 (1992), p. 2729.

    Google Scholar 

  16. I. Adesida et al., Appl. Phys. Lett., 63 (1993), p. 2777.

    CAS  Google Scholar 

  17. M.E. Lin et al., Appl. Phys. Lett., 64 (1994), p. 887.

    CAS  Google Scholar 

  18. A.T. Ping et al., Electronics Lett., 30 (1994), p. 1895.

    CAS  Google Scholar 

  19. W. Pletschen, R. Niegurh, and K.H. Bachem, Wide Bandgap Semiconductors and Devices, vol. 95-21 (Pennington, NJ: Electrochemical Society, 1995), p. 241.

    Google Scholar 

  20. H. Lee, D.B. Oberman, and J.S. Harris, Jr., Appl. Phys. Lett., 67 (1995), p. 1754.

    CAS  Google Scholar 

  21. G.S. Oehrlein et al., J. Electrochem. Soc., 132 (1982), p. 1441.

    Google Scholar 

  22. S.W. Pang, Microelectron. Eng., 5 (1986), p. 351.

    CAS  Google Scholar 

  23. G.F. McLane, S.J. Pearton, and C.R. Abernathy, Wide Bandgap Semiconductors and Devices, vol. 95-21 (Pennington, NJ: Electrochemical Society, 1995), p. 204.

    Google Scholar 

  24. S.J. Pearlon et al., Semicond. Sci. Technol., 8 (1993), p. 310.

    Google Scholar 

  25. S.J. Pearton, C.R. Abernathy, and F. Ren, Appl. Phys. Lett., 64 (1994), p. 2294.

    CAS  Google Scholar 

  26. S.J. Pearton, C.R. Abernathy, and F. Ren, Appl. Phys. Lett., 64 (1994), p. 3643.

    CAS  Google Scholar 

  27. R.J. Shul et al., Appl.. Phys. Lett., 66 (1995), p. 1761.

    CAS  Google Scholar 

  28. R.J. Shul et al., J. Vac. Sci. Techol. B, B13 (1995) p. 2016.

    Google Scholar 

  29. R.J. Shul et al., Proceedings of the Twenty-Second State of the Art Program on Compound Semiconductors (SOT APOCS XXII), vol. 95-6 (Pennington, NJ: Electrochemical Society, 1995), p. 209.

    Google Scholar 

  30. S.J. Pearton et al., “Plasma Chemistries for Dry Etching GaN, A1N, InGaN, and InA1N,” to be published in MRS Proceedings, Spring (1996).

    Google Scholar 

  31. L. Zhang et al., Appl.. Phys. Lett., 68 (1996), p. 367.

    CAS  Google Scholar 

  32. W.M. Tong and R.S. Williams, Ann. Rev. Phys. Chem., 45 (1994), p. 401.

    CAS  Google Scholar 

  33. A. Scherer et al., Appl.. Phys. Lett., 55 (1989), p. 2724.

    CAS  Google Scholar 

  34. I. Adesida et al., Appl. Phys. Lett., 65 (1994), p. 889.

    CAS  Google Scholar 

  35. A.T. Ping et al., J. Electr. Mat., 24 (1995), p. 229.

    CAS  Google Scholar 

  36. A.T. Ping, I. Adesida, and M.A. Khan, Appl. Phys. Lett., 67 (1995), p. 1250.

    CAS  Google Scholar 

  37. A.T. Ping et al., J. Electr. Milt., 25 (1996), p. 825.

    CAS  Google Scholar 

  38. See Figures l(c) and l(d) in H.P. Gillis et al., Appl. Phys. Lett., 68 (1996), p. 2255.

    CAS  Google Scholar 

  39. H.P. Gillis et al., “Low Energy Electron-Enhanced Etching of GaN in a Hydrogen d.c. Plasma,” submitted to J. Electrochem. Soc.

  40. D. Feiler et al., “Pulsed Laser Deposition of Epitaxial A1N, GaN, and InN (0001) Films on Sapphire (0001),” J. Cryst. Growth, in press.

  41. S.J. Pearton, C.R. Abernalhy, and F. Ren, Appl. Phys. Lett., 64 (1994), p. 3643.

    CAS  Google Scholar 

  42. R.J. Shul et al., Wide Bandgap Semiconductors and Devices, vol. 95-21 (Pennington, NJ: Electrochemical Society, 1995), p. 217.

    Google Scholar 

  43. S.J. Pearton et al., “Plasma Chemistries for Dry Etching GaN, A1N, InGaN, and InA1N,” to be published in MRS Proceedings (1996).

    Google Scholar 

  44. A.T. Ping, M.A. Khan, and I. Adesida, “Dry Etching of A1GaN Using Chemically Assisted Ion Beam Etching,” preprint, submitted to Semicond. Sci. Technol.

  45. S.N. Mohammad, A.A. Salvador, and H. Morkoc, IEEE Proc., 83 (1995), p. 1306.

    CAS  Google Scholar 

  46. S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys., 30 (1991), p. L1998.

    CAS  Google Scholar 

  47. S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., 32 (1993), p. L8.

    CAS  Google Scholar 

  48. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., 64 (1994), p. 1687.

    CAS  Google Scholar 

  49. S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys., 76 (1994), p. 8189.

    CAS  Google Scholar 

  50. S. Nakamura et al., Jpn. J. Appl. Phys., 34 (1995), p. L797.

    CAS  Google Scholar 

  51. S. Nakamura et al., Jpn. J. Appl. Phys., 34 (1995), p. L1332.

    CAS  Google Scholar 

  52. S. Nakamura et al., Jpn. J. Appl. Phys., 35 (1996), p. L74.

    CAS  Google Scholar 

  53. S.J. Pearton et al., Appl. Phys. Lett., 66 (1995), p. 1632.

    Google Scholar 

  54. K.L. Seaward and N.J. Moll, J. Vac. Sci. Technol., BI0 (1992), p. 46.

    Google Scholar 

  55. S.J. Pearton et al., Appl. Phys. Lett., 67 (1995), p. 2329.

    CAS  Google Scholar 

  56. S.J. Pearton et al., “Dry Etch Damage in InN, InGaN, and InA1N,” MRS Proceedings (Pittsburgh, PA: MRS, 1966).

    Google Scholar 

  57. Z. Fang et al., Appl. Phys. Lett., 68 (1996), p. 1672.

    Google Scholar 

  58. F. Ren et al., Appl.. Phys. Lett., 58 (1991), p. 1030.

    CAS  Google Scholar 

  59. B. Molnar, C.R. Eddy, Jr. and K. Doverspike, J. Appl.. Phys., 78 (1995), p. 6132.

    CAS  Google Scholar 

  60. B. Momar, C.R. Eddy, Jr. and K. Doverspike, Proceedings of the Twenty-Third State of the Art Program on Compound Semiconductors (SOTAPOCS XXIII), vol. 95-21 (Penninglon, NJ: Electrochemical Society, 1995), p. 236.

    Google Scholar 

  61. C.R. Eddy, Jr., and B. Molnar, “The Effects of Hydrogen-based, High Density Plasma Etching on the Electronic Properties of Gallium Nitride,” MRS Proceedings, vol. 395 (Pittsburgh, PA: MRS, 1996).

    Google Scholar 

  62. J.M. Zavada et al., Appl. Phys. Lett., 63 (1993), p. 1143.

    Google Scholar 

  63. S.J. Pearlon et al., Proceedings of the Twenty-Third State of the Art Program on Compound Semiconductors (SOT APOCS XXIII), vol. 95-21 (Pennington, NJ: Electrochemical Society, 1995), p. 178.

    Google Scholar 

  64. L. Zhang et al., Appl. Phys. Lett., 68 (1996), p. 367.

    CAS  Google Scholar 

  65. A.Y. Polyakov et al., “The mfluence of Hydrogen Plasma Passivation on Electrical and Optical Properties of A1GaN Samples Grown on Sapphire,” MRS Proceedings (Pittsburgh, PA: MRS, (1996).

    Google Scholar 

  66. M.S. Brandt et al., Appl.. Phys. Lett., 64 (1994), p. 2264.

    CAS  Google Scholar 

  67. S.K. Estreicher, Proceedings of the Twenty-Third State of the Art Program on Compound Semiconductors (SOT APOCS XXIII), vol. 95-21 (Pennington, NJ: The Electrochemical Society, 1995), p. 78.

    Google Scholar 

  68. S.J. Pearton, ed., Hydrogen in Compound Semiconductors (Geneva, Switzerland: Trans. Tech. Publications, 1994).

    Google Scholar 

  69. J.H. Brewer et al., Phys. Rev. Lett., 31 (1973), p. 143.

    CAS  Google Scholar 

  70. S.K. Estreicher, Mater. Sci. Engr. Reports, 14 (1995), p. 1.

    Google Scholar 

  71. M. Hierlmann et al., “Kinetic Modeling of the Gas Phase Decomposition of Germane by Computational Chemistry Techniques,” Jour. de Phys. IV (Colloque), 5 (1995), p. 71.

    Google Scholar 

  72. B.A. Helmer, D.B. Graves, and M.E. Barone, Symposium on Modeling and Simulation of Thin-Film Processing, ed. D.J. Srolovity, C.A. Volkert, M.J. Fluss, and R.J. Kee (Pittsburgh, PA: MRS, 1995), pp. 23–28.

    Google Scholar 

  73. T.A. Schoolcraft et al., J. Vac. Sci. Technol., A13 (1995), p. 1861.

    Google Scholar 

  74. C.M. Chiang et al., Chem. Phys. Lett., 246 (1995), p. 275.

    CAS  Google Scholar 

  75. H.P. Gillis, J.L. Clemons, and J.P. Chamberlain, J. Vac. Sci. Technol., BI0 (1992), p. 2729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillis, H.P., Choutov, D.A. & Martin, K.P. The dry etching of group III-nitride wide-bandgap semiconductors. JOM 48, 50–55 (1996). https://doi.org/10.1007/BF03223028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223028

Keywords

Navigation