Skip to main content
Log in

Moisture and hydrogen-induced embrittlement of iron aluminides

  • Environmental Effect
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

It is now apparent that Fe3Al and FeAl alloys with less than 40 at.% Al are intrinsically ductile. Brittleness is manifested only in environments providing ready access to hydrogen. Microstructure, alloy content and surface condition may alter somewhat the susceptibility to embrittlement by moisture or by hydrogen, but are key considerations in alloy design for toughness or ductility when aluminum content is within the Fe3Al-FeAl range. The susceptibility of iron aluminides to moisture and to hydrogen is a major factor hampering their development as structural alloys. Other properties which need to be improved include tensile strength and creep and impact resistance, but approaches to achieve improved strength properties must consider the susceptibility to the external environment. Development of alloys with less than 16% Al appears to be attractive for situations where reduced strength and oxidation resistance can be tolerated because of the insensitivity of these alloys to embrittlement. However, it must be realized that these alloys are not intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Stoloff, Hydrogen Effects on Material Behavior(Warrendale, PA: TMS, 1990), pp. 483–497.

    Google Scholar 

  2. C.T. Liu, Intermetallic Compounds—Structure and Mechanical Properties, Proc. JIMlS-6 (Sendai, Japan: Japan Institute of Metals, 1991), pp. 703–712.

    Google Scholar 

  3. N.S. Stoloff, M. Shea, and A. Castagna, Environmental Effects on Advanced Materials, ed. R.H. Jones and R.E. Ricker (Warrendale, PA: TMS, 1991), pp. 3–19.

    Google Scholar 

  4. C.T. Liu, Ordered lntermetallics—Physical Metallurgy and Mechanical Behavior, ed. C.T. Liu, R.W. Cahn, and G. Sauthoff (Dordrecht, the Netherlands: Kluwer Acad. Publ., 1992), pp. 321–334.

    Google Scholar 

  5. C.T. Liu, E.H. Lee, and C.G. McKamey, Scripta Metall., 23 (1989), pp. 875–880.

    CAS  Google Scholar 

  6. C.T. Liu, C.G. McKamey, and E.H. Lee, Scripta Metall., 24 (1990), pp. 385–390.

    CAS  Google Scholar 

  7. M. Shea, A. Castagna, and N.S. Stoloff, High Temperature Ordered Intermetallic Alloys IV, ed. L.A. Johnson, D.P. Pope, and J.O. Stiegler (Pittsburgh, PA: MRS, 1992), pp. 609–616.

    Google Scholar 

  8. D.B. Kasul and L.A. Heldt, Environmental Effects on Advanced Materials, ed. R.H. Jones and R.E. Ricker (Warrendale, PA: TMS, 1991), pp. 67–75.

    Google Scholar 

  9. A. Castagna and N.S. Stoloff, Scripta Metall., 26 (1992), pp. 673–678.

    CAS  Google Scholar 

  10. R.A. Buchanan and J.G. Kim, Dept. Of Energy, Fossil Energy Advanced Research and Development Materials Program, Report ORNL/Sub/88-07685CT92/02 (Springneld, VA: NTIS, August 1992).

    Google Scholar 

  11. D. Zhang et al., Scripta Metall., 27 (1992), pp. 297–301.

    CAS  Google Scholar 

  12. C.T. Liu, Oak Ridge National Laboratory, unpublished research (1992).

  13. S.A. David, Oak Ridge National Laboratory, unpublished research (1993).

  14. J. Scott, M.S. thesis, Rensselaer Polytechnic Inst. (May 1992).

    Google Scholar 

  15. A. Castagna, P.J. Maziasz, and N.S. Stoloff, High Temperature Ordered Intermetallics V, ed. I. Baker etal. (Pittsburgh, PA: MRS, 1993), pp. 1043–1048.

    Google Scholar 

  16. G.E. Fuchs and N.S. Stoloff, Acta Metall., 36 (1988), pp. 1381–1387.

    CAS  Google Scholar 

  17. J.P. Lin et al., Scripta Metall., 27 (1992), pp. 1295–1299.

    CAS  Google Scholar 

  18. C.G. McKamey, J.A. Horton, and C.T. Liu, J. Mater. Res., 4 (1989), pp. 1156–1193.

    CAS  Google Scholar 

  19. C.G. McKamey and D.H. Pierce, Scripta Metall., 28 (1993), pp. 1173–1176.

    CAS  Google Scholar 

  20. A. Castagna and N.S. Stoloff, unpublished work (1993).

  21. A. Castagna and N.S. Stoloff, Proc. Fatigue 93, ed. J.P. Bailon and J.I. Dickson (Cradley Heath, U.K.: Engineering Materials Advisory Services, 1993).

    Google Scholar 

  22. C.T. Liu and E.P. George, High Temperature Ordered Intermetallic Alloys IV, ed. L.A. Johnson, D.P. Pope, and J.O. Stiegler (Pittsburgh, PA: MRS, 1991), pp. 527–532.

    Google Scholar 

  23. D.J. Gaydosh and M.V. Nathal, Scripta Metall., 24 (1990), pp. 1281–1284.

    CAS  Google Scholar 

  24. P. Nagpal and I. Baker, Scripta Melall., 25 (1991), pp. 2577–2582.

    CAS  Google Scholar 

  25. O. Klein and I. Baker, Scripta Metall., 27 (1992) pp. 1823–1828.

    CAS  Google Scholar 

  26. J. Schneibel and M.G. Jenkins, Scripta Metall., 28 (1993), pp.389–393.

    CAS  Google Scholar 

  27. C.T. Liu and M. Takeyama, Scripta Metall., 24 (1990), pp. 1583–1588.

    CAS  Google Scholar 

  28. G.M. Camus, N.S. Stoloff, and D.J. Duquette, Acta Metall, 37 (1989), pp. 1497–1501.

    CAS  Google Scholar 

  29. I.M. Robertson and H.K. Birnbaum, Acta Metall., 34 (1986), pp. 363–366.

    Google Scholar 

  30. H.K. Birnbaum, Environment-Induced Cracking of Metals, ed. R.G. Gangloff and M.B. Ives (Houston, TX: NACE, 1990), pp. 21–29.

    Google Scholar 

  31. G.M. Bond, I.M. Robertson, and H.K. Birnbaum, Acta Metall., 37 (1989), pp. 1407–1213.

    CAS  Google Scholar 

  32. G.M. Bond, I.M. Robertson, and H.K. Birnbaum, Acta Metall., 36 (1988), pp. 2193–2198.

    CAS  Google Scholar 

  33. S.P. Lynch, Acta Metall., 36 (1988), p. 2639.

    CAS  Google Scholar 

  34. A.K. Kuruvilla and N.S. Stoloff, High Temperature Ordered Intermetallic Alloys, ed. C.C. Koch, C.T. Liu, and N.S. Stoloff (Pittsburgh, PA: MRS, 1985), pp. 229–238.

    Google Scholar 

  35. C.L. Fu and G.S. Painter, J. Mater. Res., 6 (1991), pp. 719–723.

    CAS  Google Scholar 

  36. Y. Liu et al., Acta Metall., 37 (1989), pp. 507–517.

    CAS  Google Scholar 

  37. J.C.M. Li and C.T. Liu, Scripta Metall., 27 (1992), pp. 1701–1706.

    CAS  Google Scholar 

  38. D.S. Shih, G.K. Scarr, and G.E. Wasielewski, Scripta Metall., 23 (1989), pp. 973–978.

    CAS  Google Scholar 

  39. A.W. Thompson, Environmental Effects on Advanced Materials, ed. J.H. Jones and R.E. Ricker (Warrendale, PA: TMS, 1991), pp. 21–23.

    Google Scholar 

  40. A.K. Kuruvilla and N.S. Stoloff, Scripta Metall., 19 (1985), pp. 83–87.

    CAS  Google Scholar 

  41. V.K. Sikka, S. Viswanathan, and S. Vyas, High Temperature Ordered Intermetallic Alloys V, ed. I. Baker et al. (Pittsburgh, PA: MRS, 1993), pp. 971–976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoloff, N.S., Duquette, D.J. Moisture and hydrogen-induced embrittlement of iron aluminides. JOM 45, 30–35 (1993). https://doi.org/10.1007/BF03222512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03222512

Keywords

Navigation