Skip to main content
Log in

Polycrystalline diamond fibers for metal-matrix composites

  • Advanced Processing
  • Applied Technology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper describes the development of a novel polycrystalline diamond fiber that has attractive isotropic thermal properties at a moderate cost. The fiber is processed first by chemical vapor deposition (CVD) and then by microwave plasma-enhanced CVD. Using the fiber as a reinforcement for metal-matrix composites offers numerous advantages in terms of engineering properties (e.g., a coefficient of thermal expansion that can be tailored to match the values of semiconductor materials, an enhanced thermal conductivity, and light weight). The resulting composites have a great potential for application in the thermal management of electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Field, The Properties of Diamond (New York: Academic Press, 1979).

    Google Scholar 

  2. D.V. Fedoseev, V.P. Varnin, and B.V. Deryyagin, Russ. Chem., Rev. (English Trans.) 53(5) (1984), pp. 435–444.

    Google Scholar 

  3. A.A. Morrish et al., Proceedings of the Third International Symposium on Diamond Materials (Pennineton, NT: Electrochemical Society, 1993), p. 854.

    Google Scholar 

  4. P.W. May et al., “The Production of Diamond Tubes and Fibers,” in Ref. 3, p. 1036.

    Google Scholar 

  5. R.T.K. Baker and P.S. Harris, Chemistry and Physics of Carbon (New York: Dekker, 1978), p. 83.

    Google Scholar 

  6. G.G. Tibbetts, M. Endo, and C.P. Beetz, SAMPE Journal (September/October 1983), pp. 30–35.

    Google Scholar 

  7. M. Endo and K. Komaki, Extended Abstracts, 16th Biennial Conference on Carbon, San Diego, CA (1983), p. 523.

    Google Scholar 

  8. G.G. Tibbetts, Carbon, 30 (1992), p. 399.

    CAS  Google Scholar 

  9. J. Heremans and C.P. Beetz, J. Phys. Rev. B, 32 (1985), p. 1981.

    CAS  Google Scholar 

  10. J.-M. Ting and M.L. Lake, J. Mat. Res., 9(3) (1994).

    Google Scholar 

  11. J.-M. Ting and M.L. Lake, Diamond and Related materials, to be published.

  12. M.L. Lake, J.-M. Ting, and J.F. Phillips, Jr., Surf. Coat. Techn., 62 (1993), p. 367.

    CAS  Google Scholar 

  13. B.V. Deryagin and D.V. Fedoseev, Growth of Diamond and Graphite from the Gas Phase (Moscow: Nauka, 1977).

    Google Scholar 

  14. J. Angus, Diamond Films '91 (Nice, France: 1991).

  15. T. Suzuki et al, Wayne State University Third Annual Diamond Technology Workshop (March 1992).

  16. J.J. Dubray, CG. Pantano, and W.A. Yarbrough, J. Appl. Phys., 72(7) (1992), p. 3136.

    CAS  Google Scholar 

  17. W.B. Johnson and B. Sonuparlak, “Diamond/Al Metal Matrix Composites formed by the Pressureless Metal Infiltration Process,” J. Mater. Res., 8(5) (May 1993).

    Google Scholar 

  18. J.R. Guth and M.L. Lake, “Pyrolytic Carbon Fiber/Al uminum Composites,” The 17th Conference on Metal Matrix, Carbon, and Ceramic Matrix Composites (NASA, 1993).

    Google Scholar 

  19. J.E. Graebner et al, Nature, 359 (1992), p. 401.

    CAS  Google Scholar 

  20. J.E. Graebner et al., “Thermal Conductivity and the Microstructure of State-of-the-Art Chemical-Vapor-Deposited (CVD) Diamond,” Diamond and Related materials, 2 (1993), pp. 1059–1063.

    CAS  Google Scholar 

  21. J.V. Busch and J.P. Dismukes, “Economics of CVD Diamond,” in Ref. 3, p. 880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, JM., Lake, M.L. Polycrystalline diamond fibers for metal-matrix composites. JOM 46, 23–25 (1994). https://doi.org/10.1007/BF03220644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220644

Keywords

Navigation