Skip to main content
Log in

Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of its impregnated PMMA bone cement V. Effect of silane coupling agent on the surface modification of UHMWPE powder

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Conventional poly(methyl methacrylate)(PMMA) bone cement has been widely used as an useful biopolymeric material to fix bone using artificial prostheses. However, many patients had to be reoperated, due to the poor mechanical and thermal properties of conventional PMMA bone cement, which are derived from the presence of unreacted MMA liquid, the shrinkage and bubble formation that occur during the curing process of the bone cement, and the high curing temperature(above 100 °C) which has to be used. In the present study, a composite PMMA bone cement was prepared by impregnating conventional PMMA bone cement with ultra high molecular weight polyethylene(UHMWPE) powder, in order to improve its mechanical and thermal properties. The UHMWPE powder has poor adhesion with other biopolymeric materials due to the inertness of the powder surface. Therefore, the surface of the UHMWPE powder was modified with two kinds of silane coupling agent containing amino groups(3-amino propyltriethoxysilane(TSL 8331®) andN-(2-aminoethyl)-3-(amino propyltrimethoxysilane)(TSL 8340®)), in order to improve its bonding strength with the conventional PMMA bone cement. The tensile strengths of the composite PMMA bone cements containing 3 wt% of the UHMWPE powder surface-modified with various ratios of TSL 8331® and TSL 8340® were similar or a little higher than that of the conventional PMMA bone cement. However, no significant difference in the tensile strengths between the conventional PMMA bone cement and the composite PMMA bone cements could be found. However, the curing temperatures of the composite PMMA bone cements were significantly decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Khang and H. B. Lee,Biomedical Polymers, Munundang, Korean Chemical Society Press, 2002, pp 33-36.

  2. L. Lindner,Acta. Orthop. Scand.,47, 3 (1976).

    Article  Google Scholar 

  3. D. H. Yang, G. H. Yoon, S. H. Kim, J. M. Rhee, and G. Khang,Polymer(Korea),28, 77 (2004).

    CAS  Google Scholar 

  4. K. D. Park, G. Khang, H. B. Lee, and J. B. Park,Bio-Med. Mater. Eng.,11, 311 (2001).

    CAS  Google Scholar 

  5. (5)K. D. Park, J. Kim, S. J. Yang, A. Yao, and J. B. Park,J. Biomed. Mater. Res.,65B, 272 (2003).

    Article  CAS  Google Scholar 

  6. Y. H. Kang and J. B. Park,J. Biomed. Mater. Res.,43, 261 (1998).

    Article  CAS  Google Scholar 

  7. (7)B. V. Rejda, J. G. Peelen, and K. DeGroot,J. Biomed. Mater. Res.,22, 751 (1998).

    Google Scholar 

  8. J. M. Yang, P. Y. Hung, M. C. Yang, and S. K. Lo,J. Biomed. Mater. Res.,40, 361 (1997).

    Article  Google Scholar 

  9. K. D. Park, Y. H. Kang, and J. B. Park,J. Long Term Eff. Med. Implants,9, 303 (1999).

    CAS  Google Scholar 

  10. G. Khang, Y. H. Kang, H. B. Lee, and J. B. Park,Bio-Med. Mater. Eng.,6, 335 (1996).

    CAS  Google Scholar 

  11. K. D. Park and J. B. Park,J. Biomed. Mater. Res.,53, 737 (2000).

    Article  CAS  Google Scholar 

  12. J. Berzen, “Standardization of UHMWPE for Use as Implant Material”, inUltra-High Molecular Weight Polyethylene as Biomaterial in Orthopedic Surgery, H. G. Willert, G. H. Buchhorn, and P. Eyerer, Eds., Hogrefe & Huber Pub., Toronto, 1991.

    Google Scholar 

  13. I. Oh, T. W. Sander, and R. W. Treharne,Clin. Orthop. Rel. Res.,189, 308 (1984).

    Google Scholar 

  14. D. N. Hild and P. Schwartz,J. Mat. Sci.: Mater. Medicine,4, 481 (1993).

    Article  CAS  Google Scholar 

  15. M. S. Silverstein, O. Breuer, and H. Dodiuk,J. Appl. Polym. Sci.,52, 1785 (1994).

    Article  CAS  Google Scholar 

  16. C. M. Chan,Polymer Surface Modification and Characterization, Munich, Hanser Publishers, 1993.

    Google Scholar 

  17. K. T. Chu, Y. Oshida, E. B. Hancock, M. J. Kowolik, T. Barco, and S. L. Zunt,Bio-Med. Mater. Eng.,14, 87 (2004).

    CAS  Google Scholar 

  18. S. Saha and S. Pal,J. Biomech.,17, 467 (1984).

    Article  CAS  Google Scholar 

  19. M. G. Hodosh, G. Shklar, and M. Povar,J. Biomed. Mater. Res.,9, 97 (1975).

    Article  CAS  Google Scholar 

  20. K. Serbetci, F. Korkusuz, and N. Hasirci,Polymer Testing,23, 145 (2004).

    Article  CAS  Google Scholar 

  21. J. M. Yang, C. S. Lu, Y. H. Hsu, and C. H. Shih,J. Biomed. Mater. Res.,38, 143 (1997).

    Article  CAS  Google Scholar 

  22. J. M. Yang, C. S. Lu, Y. H. Hsu, and C. H. Shih,J. Biomed. Mater. Res.,48, 52 (1999).

    Article  CAS  Google Scholar 

  23. E. A. Friis, F. W. Cooke, and H. K. Yasuda, inFifth World Biomater. Congr., Toronto, Canada, 913 (1996).

    Google Scholar 

  24. S. Pal and S. Saha,Biomaterials,3, 93 (1982).

    Article  CAS  Google Scholar 

  25. A. Knoell, H. Maxwell, and C. Bechtol,Ann. Biomed. Eng.,3, 225 (1975).

    Article  CAS  Google Scholar 

  26. S. Saha ans S. Pal,J. Biomech.,17, 467 (1984).

    Article  CAS  Google Scholar 

  27. T. M. Wright and P. S. Trent,J. Mater. Sci.,14, 503 (1979).

    Article  CAS  Google Scholar 

  28. H. C. Park, Y. K. Liu, and R. S. Lakes,J. Biomech. Eng.,108, 141 (1986).

    Article  CAS  Google Scholar 

  29. Y. K. Liu, J. N. Park, G. O. Njus, and D. Stienstra,J. Biomed. Mater. Res.,21, 247 (1987).

    Article  CAS  Google Scholar 

  30. L. D. T. Topoleski, P. Ducheyne, and J. M. Cuckler,J. Biomed. Mater. Res.,26, 1595 (1992).

    Article  Google Scholar 

  31. J. L. Gilbert, D. S. Ney, and E. P. Lautenschlage, in20 th Annu. Meeting Soc. Biomater., San Francisco, 141 (1994).

  32. C. A. Buckley, J. L. Gilbert, and E. P. Lautenschlager,J. Appl. Polym. Sci.,44, 1321 (1992).

    Article  CAS  Google Scholar 

  33. B. Pourdeyhimi and H. D. Wagner,J. Biomed. Mater. Res.,23, 63 (1989).

    Article  CAS  Google Scholar 

  34. J. Berzen, inUltra-High Molecular Weight Polyethylene as Biomaterial in Orthopedic Surgery, H. G. Willert, G. H. Buchhorn, and P. Eyerer, Eds., Hogrefe & Huber Pub., Toronto, 1991.

    Google Scholar 

  35. D. H. Yang, G. H. Yoon, S. H. Kim , J. M. Rhee , and G. Khang ,J. Biomed. Mater. Res. (Appl. Biomater.), accepted (2005).

  36. D. H. Yang , G. H. Yoon , S. H. fnKim , J. M. Rhee , and G. Khang ,Bio-med. Mater. Eng., in press (2005).

  37. D. H. Yang, G. H. Yoon, S. H. Kim, J. M. Rhee, and G. Khang,J. Biomater. Sci., Polym. Ed., in press (2005).

  38. L. Qing, D. Jiang, D. E. Chambers, S. Debnath, S. L. Wunder, and G. R. Baran,J. Biomed. Mater. Res.,57, 384 (2001).

    Article  Google Scholar 

  39. S. Debnath, S. L. Wunder, J. I. McCool, and G. R. Baran,Acad. Dental Mater.,19, 441 (2003).

    Article  CAS  Google Scholar 

  40. D. L. Pavia, G. M. Lampman, and G. S. Kriz ,Introduction to Spectroscopy, Brooks/Cole, Duxbury, Heinle & Heinle, Schirmer, Wadsworth, and West, 2001, pp 72-74.

  41. H. Le Chatelier,Compt. Rend.,196, 1557 (1993).

    Google Scholar 

  42. S. A. Yerby, A. F. Paal, P. M. Young, G. S. Beaupre, K. L. Ohashi, and S. B. Goodman,J. Biomed. Mater. Res.,49, 127 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D.H., Yoon, G.H., Shin, G.J. et al. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of its impregnated PMMA bone cement V. Effect of silane coupling agent on the surface modification of UHMWPE powder. Macromol. Res. 13, 120–127 (2005). https://doi.org/10.1007/BF03219025

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219025

Keywords

Navigation