Skip to main content
Log in

Plasma-treated ultra-high-strength polyethylene fibres improved fracture toughness of poly(methyl methacrylate)

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Use of ultra-high-strength polyethylene (UHSPE) fibres in composites has been limited by problems with adhesion to the matrix. The present study presents a gas-plasma treatment of UHSPE staple fibres (Spectra 900 and 1000) to improve adhesion to poly (methyl methacrylate). The gases used were nitrogen, argon and carbon dioxide for treatment times of 0 and 1 min. No significant differences were observed in flexural stresses, and only modest improvements were seen in the flexural modulus and the stress-intensity factor by reinforcing the cements with surface-modified UHSPE fibres. At least a sixfold improvement in the toughness index (fracture energy) was observed by reinforcing the cements with carbon dioxide treated fibres with a fibre index, l/d, of 776 at 1 wt %. The fibres added reinforcement by a crack-bridging effect that significantly improved the toughness index. The plasma treatment altered the fibre surface sufficiently to cause significant differences in the susceptibility to plastic flow during the fibre pull-out process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Charnely, J. Bone Jt. Surg. 42B (1960) 28.

    Google Scholar 

  2. J. Charnely, J. Bone Jt. Surg. 46B (1964) 518.

    Google Scholar 

  3. T. A. Gruin, G. M. McNeice and H. C. Amstutz, Clin. Orthop. Relat. Res. 141 (1979) 17.

    Google Scholar 

  4. “Orthopædic knowledge update I”, Amer. Acad. of Orthop. Surg., Chicago, IL, (1984).

  5. B. H. Pourdeyhimi and H. D. Wagner, J. Biomed. Mater. Res. 23 (1989) 63.

    Google Scholar 

  6. R. A. Latour and J. Black, J. Mater. Sci. 24 (1989) 3616.

    Google Scholar 

  7. O. S. KOLLURI, S. L. KAPLAN and P. W. ROSE, Soc. Plast. Eng./Adv. Polym. Compos. '88 1–8 (1988).

  8. S. Holmes and P. Schwartz, Compos. Sci. Technol. 38 (1990) 1.

    Google Scholar 

  9. S. KAPLAN and P. ROSE, ANTEC '88 (1988) 1542–5.

  10. S. L. KAPLAN, P. W. ROSE, H. X. NGUYEN and H. W. CHANG, 33rd Int. SAMPE Sympos. (1988) 551–9.

  11. O. S. KOLLURI, S. L. KAPLAN and P. W. ROSE, Soc. Plast. Eng./Adv. Polym. Compos. '88 1–8 (1988).

  12. Z. F. Li and A. N. Netravali, J. Appl. Polym. Sci. 44 (1992) 333.

    Google Scholar 

  13. D. N. Hild and P. Schwartz, J. Adhes. Sci. Technol. 6(8), (1992) 879.

    Google Scholar 

  14. D. N. Hild and P. Schwartz, J. Adhes. Sci. Technol. 6(8) (1992) 897.

    Google Scholar 

  15. S. Timoshenko and J. N. Goodier, “Theory of elasticity”, (McGraw-Hill, New York, 1951).

    Google Scholar 

  16. R. W. Hertzberg, “Deformation and fracture mechanics of engineering materials”, (Wiley, New York, 1976).

    Google Scholar 

  17. H. D. Wagner and D. Cohn, Biomaterials 10 (1989) 139.

    Google Scholar 

  18. Y. WANG, “Mechanics of fiber reinforced cementitious composites”, Unpublished doctoral thesis, massachussetts Institute of Technology (1989).

  19. M. R. Piggott, Polym. Compos. 3(4) (1982) 179.

    Google Scholar 

  20. J. Smook, W. Hamersma, and A. J. Pennings, J. Mater. Sci. 19 (1984) 1359.

    Google Scholar 

  21. P. Schwartz, A. Netravali and S. Sembach, Tex. Res. J. 56(8) (1986) 502.

    Google Scholar 

  22. K. W. M. Davy, S. Parker, M. Braden, I. M. Ward and H. Ladizesky, Biomaterials 13 (1992) 17.

    Google Scholar 

  23. B. Pourdeyhimi, H. H. I. Robinson, P. Schwartz and H. D. Wagner, Annals Biomed. Engin. 14 (1986) 277.

    Google Scholar 

  24. B. Pourdeyhimi, H. D. Wagner and P. Schwartz, J. Mater. Sci. 21 (1986) 4468.

    Google Scholar 

  25. N. H. Ladizesky and I. M. Ward, J. Mater. Sci., 24 (1989) 3763.

    Google Scholar 

  26. S. Wu, “Polymer interface and adhesion”, (Marcel Dekker, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hild, D.N., Schwartz, P. Plasma-treated ultra-high-strength polyethylene fibres improved fracture toughness of poly(methyl methacrylate). J Mater Sci: Mater Med 4, 481–493 (1993). https://doi.org/10.1007/BF00120128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120128

Keywords

Navigation