Skip to main content
Log in

Gas separation of pyrolyzed polymeric membranes: Effect of polymer precursor and pyrolysis conditions

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous α-alumina tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/ a-alumina tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a CO2/N2 selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Perez-Mendoza,et al., Carbon,44, 638 (2006).

    Article  CAS  Google Scholar 

  2. D. Q. Vu, W. J. Koros, and S. J. Miller,J. Membrane Sci.,211, 311 (2003).

    Article  CAS  Google Scholar 

  3. H. Suda and K. Haraya,Chem. Commun., 93 (1997).

  4. S. M. Saufi and A. F. Ismail,Carbon,42, 241 (2004).

    Article  CAS  Google Scholar 

  5. C. Liang, G. Sha, and S. Guo,Carbon,37, 1391 (1999).

    Article  CAS  Google Scholar 

  6. S. H. Park,et al., Macromol. Res.,11, 157 (2003).

    Article  CAS  Google Scholar 

  7. H. Suda and K. Haraya,J. Phys. Chem. B,101, 3988 (1997).

    Article  CAS  Google Scholar 

  8. A. Singh-Ghosal and W. J. Koros,J. Membrane Sci.,174, 177 (200).

    Article  Google Scholar 

  9. T. A. Centeno and A. B. Fuertes,Sep. Purif. Technol.,25, 379 (2001).

    Article  CAS  Google Scholar 

  10. T. A. Centeno, J. L. Vilas, and A. B. Fuertes,J. Membrane Sci.,228, 45 (2004).

    Article  CAS  Google Scholar 

  11. A. F. Ismail and L. I. B. David,J. Membrane Sci.,193, 1 (2001).

    Article  CAS  Google Scholar 

  12. W. Zhou,et al., J. Membrane Sci.,217, 55 (2003).

    Article  CAS  Google Scholar 

  13. Y. K. Kim, H. B. Park, and Y. M. Lee,J. Membrane Sci.,251, 159 (2005).

    Article  CAS  Google Scholar 

  14. Y. K. Kim, H. B. Park, and Y. M. Lee,J. Membrane Sci.,226, 145 (2003).

    Article  CAS  Google Scholar 

  15. D.o.B.-R.L. Sadtler Research Laboratories The Infrared Spectra Atlas of Monomers and Polymers, 1984.

  16. R. K. Mariwala and H. C. Foley,Ind. Eng. Chem. Res.,33, 607 (1994).

    Article  CAS  Google Scholar 

  17. L. I. B. David and A. F. Ismail,J. Membrane Sci.,213, 285 (2003).

    Article  CAS  Google Scholar 

  18. H. M. Jeong, M. Y. Choi, and Y. T. Ahn,Macromol. Res.,14, 312 (2006).

    Article  CAS  Google Scholar 

  19. B. Grzyb,et al., J. Anal. Appl. Pyrol.,67, 77 (2003).

    Article  CAS  Google Scholar 

  20. D. S. Kim,et al., Macromol. Res.,13, 314 (2005).

    Article  CAS  Google Scholar 

  21. M. G. Sedigh,et al., Ind. Eng. Chem. Res.,38, 3367 (1999).

    Article  CAS  Google Scholar 

  22. X. Zhang,et al., Sep. Purif. Technol.,52, 261 (2006).

    Article  CAS  Google Scholar 

  23. D. K. Kim,et al., Macromol. Res.,13, 521 (2005).

    Article  CAS  Google Scholar 

  24. E. P. Barrett, L. G. Joyner, and P. P. Halenda,J. Am. Chem. Soc.,73, 373 (1951).

    Article  CAS  Google Scholar 

  25. I. Mochida and S. Kawano,Ind. Eng. Chem. Res.,30, 2322 (1991).

    Article  CAS  Google Scholar 

  26. Jeffrey C. S. Wu, D. F. Flowers, and P. K. T. Liu,J. Membrane Sci.,77, 85 (1993).

    Article  CAS  Google Scholar 

  27. J. Gilron and A. Soffer,J. Membrane Sci.,209, 339 (2002).

    Article  CAS  Google Scholar 

  28. J. Hayashi,et al., Ind. Eng. Chem. Res.,34, 4364 (1995).

    Article  CAS  Google Scholar 

  29. J. Hayashi,et al., Ind. Eng. Chem. Res.,35, 4176 (1996).

    Article  CAS  Google Scholar 

  30. M. Yamaoto,et al., J. Membrane Sci.,133, 195 (1997).

    Article  Google Scholar 

  31. A. Lapkin,Membr. Tech.,116, 5 (1999).

    Article  Google Scholar 

  32. W. Wei,et al., Carbon,40, 465 (2002).

    Article  CAS  Google Scholar 

  33. W. Zhou,et al., Ind. Eng. Chem. Res.,40, 4801 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Moo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, C.H., Kim, G.W., Han, S.H. et al. Gas separation of pyrolyzed polymeric membranes: Effect of polymer precursor and pyrolysis conditions. Macromol. Res. 15, 565–574 (2007). https://doi.org/10.1007/BF03218832

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218832

Keywords

Navigation