Skip to main content
Log in

SBR/organoclay nanocomposites for the application on tire tread compounds

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount ofN,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan δ (at 0 °C and 60 °C) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamigaito,J. Mater. Res.,8, 1174 (1993).

    Article  CAS  Google Scholar 

  2. A. Okada, Y. Kojima, M. Kawasumi, Y. Fukushima, T. Kurauchi, and O. Kamigaito,J. Mater. Res.,8, 1179 (1993).

    Article  Google Scholar 

  3. Y. T. Vu, J. E. Mark, L. H. Pham, and M. Enhelhardt,J. Appl. Polym. Sci.,82, 1391 (2001).

    Article  CAS  Google Scholar 

  4. S. S. Ray and A. K. Bhowmick,Rubber Chem. Technol.,74, 835 (2001).

    Article  CAS  Google Scholar 

  5. S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza, and J. E. Mark,Chem. Mater.,14, 4202 (2002).

    Article  CAS  Google Scholar 

  6. S. Sadhu and A. K. Bhowmick,J. Appl. Polym. Sci.,92, 698 (2004).

    Article  CAS  Google Scholar 

  7. S. Sadhu and A. K. Bhowmick,J. Polym. Sci. Part B: Polym. Phys.,42, 1573 (2004).

    Article  CAS  Google Scholar 

  8. M. Arroyo, M. A. Lopez-Manchado, and B. Herrero,Polymer,44, 2447 (2003).

    Article  CAS  Google Scholar 

  9. S. Varghese and J. Karger-Kocsis,J. Appl. Polym. Sci.,91, 813 (2004).

    Article  CAS  Google Scholar 

  10. P. L. Teh, Z. A. Mohd Ishak, A. S. Hashim, J. Karger-Kocsis, and U. S. Ishiaku,J. Appl. Polym. Sci.,94, 2438 (2004).

    Article  CAS  Google Scholar 

  11. M. Ganter, W. Gronski, P. Reichert, and R. Mulhaupt,Rubber Chem. Technol.,74, 221 (2002).

    Article  Google Scholar 

  12. S. H. Wang, Z. L. Peng, Y. Zhang, and Y. X. Zhang,Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21–25,Volume B, p 257.

  13. C. Nah, H. J. Ryu, W. D. Kim, and Y. W. Chang,Polym. Int’l.,52, 1359 (2003).

    Article  CAS  Google Scholar 

  14. W. H. Kim, S. K. Kim, J. H. Kang, Y. Cheo, and Y. W. Chang,Macromol. Res.,14, 187 (2006).

    CAS  Google Scholar 

  15. N. Hasegawa, H. Okamoto, and A. Usuki,J. Appl. Polym. Sci.,93, 758 (2004).

    Article  CAS  Google Scholar 

  16. H. Zheng, Y. Zhang, Z. Peng, and Y. Zhang,J. Appl. Polym. Sci.,92, 638 (2004).

    Article  CAS  Google Scholar 

  17. J. Ma, P. Xiang, Y. W. Mai, and L. Q. Zhang,Macromol. Rapid Commun.,25, 1692 (2004).

    Article  CAS  Google Scholar 

  18. Y. Q. Wang, H. F. Zhang, Y. P. Wu, J. Wang, and L. Q. Zhang,Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21–25,Volume B, p 420.

  19. H. F. Zhang, Y. Q. Wang, Y. P. Wu, L. Q. Zhang, J. Yang, and X. F. Wang,Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21–25,Volume B, p 240.

  20. Y. P. Wu, Q. X. Jia, D. S Yu, and L. Q. Zhang,J. Appl. Polym. Sci.,89, 3855 (2003).

    Article  CAS  Google Scholar 

  21. L. Q. Zhang, Y. Z. Wang, Y. Q. Wang, Y. A. Sui, and D. S. Yu,J. Appl. Polym. Sci.,78, 1873 (2000).

    Article  CAS  Google Scholar 

  22. Y. Z. Wang, L. Q. Zhang, C. H. Tang, and D. S. Yu,J. Appl. Polym. Sci.,78, 1879 (2000).

    Article  CAS  Google Scholar 

  23. Y. Wang, H. Zhang, Y. Wu, J. Yang, and L. Zhang,Eur. Polym. J.,41, 2776 (2005).

    Article  CAS  Google Scholar 

  24. M. J. Wang and W. L. Patterson,Paper presented at ACS Meeting, Anaheim, California, May 6 (1997).

  25. W. Kim, B. S. Kang, S. G. Cho, C. S. Ha, and J. W. Bae,Compos. Interface,14, 409 (2007).

    Article  CAS  Google Scholar 

  26. Y. P. Wu, Y. Q. Wang, H. F. Zhang, Y. Z. Wang, D. S Yu, L. Q. Zhang, and J. Yang,Compos. Sci. Technol.,65, 1195 (2005).

    Article  CAS  Google Scholar 

  27. N. Kobayashi, I. Furuta, H. Akrema, and Y. Isono,Papers American Chemical Society, Division of Rubber Chemistry,154, 697 (1999).

    Google Scholar 

  28. Michael E. Martini,ACS 122 nd, paper No. 45 (1982).

  29. S. Wolff,Rubber Chem. Technol.,55, 967 (1982).

    Article  CAS  Google Scholar 

  30. W. J. Son, W. Kim, and U. R. Cho,Elastomer,37, 86 (2002).

    CAS  Google Scholar 

  31. C. Nah, Ph.D. Dissertation, The University of Akron (1995).

  32. C. T. R. Pulford, Ph.D. Dissertation, The University of Akron (1979).

  33. Theng, BKG,The Chemistry of Clays Organic Interactions, Wiley, New York, 1974.

    Google Scholar 

  34. M. J. Wang, E. H. Tan, and S. Wolff,Rubber Chem. Technol.,66, 178 (1993).

    Article  CAS  Google Scholar 

  35. S. Bandyopadhyay, P. P De, D. K. Tripathy, and S. K. De,J. Appl. Polym. Sci.,63, 1833 (1997).

    Article  CAS  Google Scholar 

  36. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia,Chem. Mater.,6, 573 (1994).

    Article  CAS  Google Scholar 

  37. A. Mousa and J. Karger-Kenny,J. Macromol. Mater. Eng.,286, 260 (2001).

    Article  CAS  Google Scholar 

  38. M. A. Lopez-Manchado, M. Arroyo, B. Herrero, and J. Biagiotti,J. Polym. Sci.,89, 6 (2003).

    Google Scholar 

  39. A. R. Payne and R. E. Whitaker,J. Appl. Polym. Sci.,16, 1191 (1972).

    Article  CAS  Google Scholar 

  40. A. N. Gent and C. T. R. Pulford,J. Appl. Polym. Sci.,28, 943 (1983).

    Article  CAS  Google Scholar 

  41. Hallamach,Proc. Phys. Soc.,B67, 883 (1954).

    Google Scholar 

  42. V. A. Garten, K. Eppinger, and D. E. Weiss,Rubber Chem. Technol.,29, 1434 (1956).

    Article  Google Scholar 

  43. M. J. Wang,Rubber Chem. Technol.,72, 470 (1999).

    Article  Google Scholar 

  44. J. B. Donnet,Rubber Chem. Technol.,71, 323 (1998).

    Article  CAS  Google Scholar 

  45. M. J. Wang,Rubber Chem. Technol.,71, 520 (1998).

    Article  CAS  Google Scholar 

  46. M. J. Son, Master’s Thesis, Pusan National University (2007).

  47. S. S. Park, B. H. Park, K. C. Song, and S. K. Kim,Polymer (Korea),24, 220 (2000).

    CAS  Google Scholar 

  48. H. Barron,Reprinted from the India-Rubber Journal,90, 638 (1935).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, WS., Lee, DH., Kim, IJ. et al. SBR/organoclay nanocomposites for the application on tire tread compounds. Macromol. Res. 17, 776–784 (2009). https://doi.org/10.1007/BF03218614

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218614

Keywords

Navigation