Skip to main content
Log in

Calix[4]arene phosphonato derivative as a novel and capable processing aid agent for improving dynamic, mechanical, and thermal behavior of tire tread rubber compounds

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

One of the main challenges concerning tire industry has always been to increase safety and reduce fuel consumption efficiency of passenger cars tire simultaneously, while other properties such as mechanical and rheological properties do not experience a notable decline. In this study, a special new processing aid agent based on 5,11,17,23-tetrakis (diethylphosphonato)-25,26,27,28-tetrabutoxycalix[4]arene (calix[4]arene phosphonato derivative or CPD), that has a unique dual structure, has been synthesized and its effect on various properties of the tire tread compound has been investigated. Fourier transform infrared spectroscopy (FTIR), elemental analysis, and nuclear magnetic resonance (1H MR, 13C NMR, and 31P NMR) were used to confirm the structure of CPD. Scanning electron microscopy (SEM) was used to investigate the effect of CPD on filler dispersion within the rubber matrix. The viscoelastic properties of the prepared tire tread compounds were examined by dynamic mechanical thermal analysis (DMTA) which showed a great increment in ice and wet grip as well as lower rolling resistance and heat build-up of the selected tire tread compound. The mechanical and rheological properties of the studied tire tread compound were measured by tensile test and moving die rheometer (MDR) test.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Essabir H, Raji M, Essassi EM, Rodrigue D, Bouhfid R, Qaiss AEK (2017) Morphological, thermal, mechanical, electrical and magnetic properties of ABS/PA6/SBR blends with Fe3O4 nano-particles. J Mater Sci Mater Electron 28:17120–17130. https://doi.org/10.1007/s10854-017-7639-2

    Article  CAS  Google Scholar 

  2. Yang S, Liang P, Peng X, Zhou Y, Hua K, Wu W, Cai Z (2018) Improvement in mechanical properties of SBR/Fly ash composites by in-situ grafting-neutralization reaction. Chem Eng J (Amst Neth) 354:849–855. https://doi.org/10.1016/j.cej.2018.08.112

    Article  CAS  Google Scholar 

  3. Liu Z, Zhang Y (2017) Enhanced mechanical and thermal properties of SBR composites by introducing graphene oxide nanosheets decorated with silica particles. Compos A 102:236–242. https://doi.org/10.1016/j.compositesa.2017.08.005

    Article  CAS  Google Scholar 

  4. Rezende CA, Bragança FC, Doi TR, Lee LT, Galembeck F, Boué F (2010) Natural rubber-clay nanocomposites: mechanical and structural properties. Polymer 51:3644–3652. https://doi.org/10.1016/j.polymer.2010.06.026

    Article  CAS  Google Scholar 

  5. D’Apuzzo M, Evangelisti A, Nicolosi V (2020) An exploratory step for a general unified approach to labelling of road surface and tyre wet friction. Accid Anal Prev 138:105462. https://doi.org/10.1016/j.aap.2020.105462

    Article  PubMed  Google Scholar 

  6. Li Y, Han B, Liu L, Zhang F, Zhang L, Wen S, Lu Y, Yang H, Shen J (2013) Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica. Compos Sci Technol 88:69–75. https://doi.org/10.1016/j.compscitech.2013.08.029

    Article  CAS  Google Scholar 

  7. Manna AK, De PP, Tripathy DK, De SK, Peiffer DG (1999) Bonding between precipitated silica and epoxidized natural rubber in the presence of silane coupling agent. J Appl Polym Sci 74:389–398. https://doi.org/10.1002/(SICI)1097-4628(19991010)74:2%3c389:AID-APP21%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  8. Kim K, Lee JY, Choi BJ, Seo B, Kwag GH, Paik HJ, Kim W (2014) Styrene-butadiene-glycidyl methacrylate terpolymer/silica composites: dispersion of silica particles and dynamic mechanical properties. Compos Interfaces 21:685–702. https://doi.org/10.1080/15685543.2014.927720

    Article  CAS  Google Scholar 

  9. Sattayanurak S, Noordermeer JW, Sahakaro K, Kaewsakul W, Dierkes WK, Blume A (2019) Silica-reinforced natural rubber: synergistic effects by addition of small amounts of secondary fillers to silica-reinforced natural rubber tire tread compounds. Adv Mater Sci Eng 2019:1–8. https://doi.org/10.1155/2019/5891051

    Article  CAS  Google Scholar 

  10. Ansarifar MA, Jain A, Nanapoolsin T (2002) Silane-silica reinforcement of some natural rubber vulcanisates. J Rubb Res 5:11–27

    CAS  Google Scholar 

  11. Karak N, Gupta BR (2000) Effects of different ingredients and cure parameters on physical properties of a tyre tread compound. Kautsch Gummi Kunstst 53:30–34

    CAS  Google Scholar 

  12. Saeed F, Ansarifar A, Ellis RJ, Haile-Meskel Y, Irfan MS (2012) Two advanced styrene-butadiene/polybutadiene rubber blends filled with a silanized silica nanofiller for potential use in passenger car tire tread compound. J Appl Polym Sci 123:1518–1529. https://doi.org/10.1002/app.34221

    Article  CAS  Google Scholar 

  13. Wang YX, Wu YP, Li WJ, Zhang LQ (2011) Influence of filler type on wet skid resistance of SSBR/BR composites: effects from roughness and micro-hardness of rubber surface. Appl Surf Sci 257:2058–2065. https://doi.org/10.1016/j.apsusc.2010.08.129

    Article  CAS  Google Scholar 

  14. Jiao Y, Liu X, Liu K (2018) Experimental study on wet skid resistance at different water-film thicknesses. Ind Lubr Tribol 70:1737–1744. https://doi.org/10.1108/ILT-11-2017-0362

    Article  Google Scholar 

  15. Pan XD (2005) Impact of reinforcing filler on the dynamic moduli of elastomer compounds under shear deformation in relation to wet sliding friction. Rheol Acta 44:379–395. https://doi.org/10.1007/s00397-004-0420-5

    Article  CAS  Google Scholar 

  16. Huang R, Pan Q, Chen Z, Feng K (2020) Maleic anhydride modified dicyclopentadiene resin for improving wet skid resistance of silica filled SSBR/BR composites. Appl Sci 10:4478. https://doi.org/10.3390/app10134478

    Article  CAS  Google Scholar 

  17. Kim NC, Song SH (2019) Effects of zinc-free processing aids on silica-reinforced tread compounds for green tires. Int J Polym Sci 2019:1–9. https://doi.org/10.1155/2019/9123635

    Article  CAS  Google Scholar 

  18. Thaptong P, Sae-Oui P, Sirisinha C (2016) Effects of silanization temperature and silica type on properties of silica-filled solution styrene butadiene rubber (SSBR) for passenger car tire tread compounds. J Appl Polym Sci 133:43342. https://doi.org/10.1002/app.43342

    Article  CAS  Google Scholar 

  19. Song SH (2020) Influence of eco-friendly processing aids on silica-based rubber composites. Appl Sci 10:7244. https://doi.org/10.3390/app10207244

    Article  CAS  Google Scholar 

  20. Harper M, Tardiff J, Haakenson D, Joandrea M, Knych M (2017) Tire tread performance modification utilizing polymeric additives. SAE Int J Veh Dyn Stab NVH 1:179–189. https://doi.org/10.4271/2017-01-1502

    Article  Google Scholar 

  21. Vleugels N, Pille-Wolf W, Dierkes WK, Noordermeer JW (2015) Understanding the influence of oligomeric resins on traction and rolling resistance of silica-reinforced tire treads. Rubber Chem Technol 88:65–79. https://doi.org/10.5254/rct.14.86947

    Article  CAS  Google Scholar 

  22. Veiga VDA, Rossignol TM, Crespo JDS, Carli LN (2017) Tire tread compounds with reduced rolling resistance and improved wet grip. J Appl Polym Sci 134:45334. https://doi.org/10.1002/app.45334

    Article  CAS  Google Scholar 

  23. Simoes BJ, de Silva D, de Fatima A, Fernandes S (2012) Calix [n] arenes in action: useful host-guest catalysis in organic chemistry. Curr Org Chem 16:949–971. https://doi.org/10.2174/138527212800194746

    Article  CAS  Google Scholar 

  24. Sliwa W, Kozlowski C (2009) Calixarenes and resorcinarenes: synthesis, properties and applications. John Wiley, Weinheim. https://doi.org/10.1002/anie.200903182

    Book  Google Scholar 

  25. Mirmoeini MS, Nikje MMA, Rasouli-Saniabadi M, Taghvaei-Ganjali S (2017) Synthesis and characterization of functionalized calix [4] arene derivatives and preparation of rigid polyurethane foams by the incorporation of calixarene. Macromol Symp 373:1600101. https://doi.org/10.1002/masy.201600101

    Article  CAS  Google Scholar 

  26. Taghvaei-Ganjali S, Rasouli-Saniabadi M, Mirmoeini MS (2015) Application of sulfonamide derivative of calixarene for improvement of mechanical properties and thermal stability of polyurethane composite. J Incl Phenom Macrocyclic Chem 83:45–52. https://doi.org/10.1007/s10847-015-0539-2

    Article  CAS  Google Scholar 

  27. Hosseini M, Rahimi M, Sadeghi HB, Taghvaei-Ganjali S, Abkenar SD, Ganjali MR (2009) Determination of Hg (II) ions in water samples by a novel Hg (II) sensor, based on calix [4] arene derivative. Int J Environ Anal Chem 89:407–422. https://doi.org/10.1080/03067310802713195

    Article  CAS  Google Scholar 

  28. Nouri M, Mozafari S, Taghvaei-Ganjali S (2011) Synthesis and characterization of nitro derivatives of calix [4] arene as an effective removal agents for Co2 and Pb2 Ions. Iran JOC 3:807–809

    Google Scholar 

  29. Taghvaei-Ganjali S, Zadmard R, Zeyaei M, Rahnama K, Faridbod F, Ganjali MR (2009) Synthesis of a new calix [4] arene and its application in construction of a highly selective silver ion-selective membrane electrode. Res Lett Org Chem 2009:1–5. https://doi.org/10.1155/2009/601089

    Article  CAS  Google Scholar 

  30. Daze KD, Jones CE, Lilgert BJ, Beshara CS, Hof F (2013) Determining the effects of salt, buffer, and temperature on the complexation of methylated ammonium ions and methyllysines by sulfonated calixarenes. Can J Chem 91:1072–1076. https://doi.org/10.1139/cjc-2013-0186

    Article  CAS  Google Scholar 

  31. Chenari AB, Saber-Tehrani M, Mamaghani M, Nikpassand M (2019) Covalently anchored chlorosulfonyl-calix [4] arene onto silica gel as an efficient and reusable heterogeneous system for reduction of ketones using NaBH 4. J Incl Phenom Macrocyclic Chem 94:45–53. https://doi.org/10.1007/s10847-019-00894-x

    Article  CAS  Google Scholar 

  32. Pang TT, Du LM, Liu HL, Fu YL (2014) Supramolecular p-sulfonated calix [4,6,8] arene for tryptophan detection. Can J Chem 92:1139–1144. https://doi.org/10.1139/cjc-2014-0150

    Article  CAS  Google Scholar 

  33. Pekachaki HM, Taghvaei-Ganjali S, Motiee F, Saber-Tehrani M (2019) Application of calixarene derivatives as tackifier resin in rubber compounds for tire applications. Rubber Chem Technol 92:467–480. https://doi.org/10.5254/rct.19.81510

    Article  CAS  Google Scholar 

  34. Servati Z, Saber-Tehrani M, Taghvaei-Ganjali S, Zadmard R (2018) Silica bonded calix [4] arene as an efficient, selective and reusable sorbent for rubber chemical additives. J Porous Mater 25:1463–1474. https://doi.org/10.1007/s10934-018-0559-6

    Article  CAS  Google Scholar 

  35. Mohamadi H, Motiee F, Taghvaei-Ganjali S, Saber-Tehrani M (2021) Application of silica supported calix [4] arene derivative as anti-reversion agent in tire tread formulation. Acta Chim Slov 68:128–136. https://doi.org/10.17344/acsi.2020.6225

    Article  CAS  PubMed  Google Scholar 

  36. Mohamadi H, Motiee F, Saber-Tehrani M, Taghvaei-Ganjali S (2019) Preparation and application of chemically bonded silica supported calix [4] arene as reinforced filler in NR/BR blend basedrubber compounds. Russ J Appl Chem 92:809–816. https://doi.org/10.1134/S1070427219060107

    Article  CAS  Google Scholar 

  37. Malekzadeh M, Nouri H, Farahani M (2010) Investigation on the influence of silane coupling agent structure on the properties of nano-silica filled rubber compound. JACR 3:41–45

    Google Scholar 

  38. Li H, Zhong Y, Wu W, Zhang L, Lai X, Zeng X (2017) Phenolic antioxidants based on calixarene: Synthesis, structural characterization, and antioxidative properties in natural rubber. J Appl Polym Sci 134:45144. https://doi.org/10.1002/app.45144

    Article  CAS  Google Scholar 

  39. Gutsche CD, Iqbal M (2003) p-tert-Butylcalix[4]arene. Org Synth 68:234–234. https://doi.org/10.1002/0471264180.os068.29

    Article  Google Scholar 

  40. Mohindra Chawla H, Srinivas K (1993) Synthesis of 25, 26, 27-tris (ethoxycarbonyl-methoxy)-28-(4-methyl-7-coumarinyloxy-carbonylmethoxy) calix-4-arene. Indian J Chem B32:1162–1164

    Google Scholar 

  41. Asfari Z, Reinhoudt DN, Verboom W, Durie A, Egberink RJ (1992) Ipso nitration of p-tert-butylcalix [4] arenes. J Org Chem 57:1313–1313. https://doi.org/10.1021/jo00030a050

    Article  Google Scholar 

  42. Conner M, Janout V, Regen SL (1992) Synthesis and alkali metal binding properties of “upper rim” functionalized calix [4] arenes. J Org Chem 57:3744–3746. https://doi.org/10.1021/jo00039a048

    Article  CAS  Google Scholar 

  43. Zadmard R, Junkers M, Schrader T, Grawe T, Kraft A (2003) Capsule-like assemblies in polar solvents. J Org Chem 68:6511–6521. https://doi.org/10.1021/jo034592q

    Article  CAS  PubMed  Google Scholar 

  44. Siriwong C, Khansawai P, Boonchiangma S, Sirisinha C, Sae-Oui P (2021) The influence of modified soybean oil as processing aids in tire application. Polym Bull 78:3589–3606. https://doi.org/10.1007/s00289-020-03296-z

    Article  CAS  Google Scholar 

  45. Thepsuwan U, Sae-oui P, Sirisinha C, Thaptong P (2019) Influence of halloysite nanotube on properties of tire tread compounds filled with silica and carbon black hybrid filler. J Appl Polym Sci 136:46987. https://doi.org/10.1002/app.46987

    Article  CAS  Google Scholar 

  46. Ghoreishy MHR, Taghvaei S, Mehrabian RZ (2011) The effect of silica/carbon black filler systems on the fatigue properties of the tread compound in passenger tires. Polym Sci Technol 24:329–337

    Google Scholar 

  47. Roshanaei H, Khodkar F, Alimardani M (2020) Contribution of filler-filler interaction and filler aspect ratio in rubber reinforcement by silica and mica. Iran Polym J 29:901–909. https://doi.org/10.1007/s13726-020-00850-4

    Article  CAS  Google Scholar 

  48. Ahmadi Shooli S, Tavakoli M (2016) Styrene butadiene rubber/epoxidized natural rubber (SBR/ENR50) nanocomposites containing nanoclay and carbon black as fillers for application in tire-tread compounds. J Macromol Sci B 55:969–983. https://doi.org/10.1080/00222348.2016.1230464

    Article  CAS  Google Scholar 

  49. Ahmadi-Shooli S, Tavakoli M (2019) A comparative study of the dynamic-mechanical properties of styrene butadiene rubber/epoxidized natural rubber dual filler nanocomposites cured by sulfur or electron beam irradiation. J Macromol Sci B 58:619–633. https://doi.org/10.1080/00222348.2019.1574428

    Article  CAS  Google Scholar 

  50. Gabriel CFS, Gabino ADAP, de Sousa AMF, Furtado CRG, Nunes RCR (2019) Tire tread rubber compounds with ternary system filler based on carbon black, silica, and metakaolin: contribution of silica/metakaolin content on the final properties. J Elastomers Plast 51:712–726. https://doi.org/10.1177/0095244318819196

    Article  CAS  Google Scholar 

  51. Ezzoddin S, Abbasian A, Aman-Alikhani M, Taghvaei-Ganjali S (2013) The influence of non-carcinogenic petroleum-based process oils on tire compounds’ performance. Iran Polym J 22:697–707. https://doi.org/10.1007/s13726-013-0168-9

    Article  CAS  Google Scholar 

  52. Mondal T, Bhowmick AK, Ghosal R, Mukhopadhyay R (2018) Expanded graphite as an agent towards controlling the dispersion of carbon black in poly (styrene-co-butadiene) matrix: an effective strategy towards the development of high-performance multifunctional composite. Polymer 146:31–41. https://doi.org/10.1016/J.POLYMER.2018.05.031

    Article  CAS  Google Scholar 

  53. Sae-oui P, Suchiva K, Thepsuwan U, Intiya W, Yodjun P, Sirisinha C (2016) Effects of blend ratio and SBR type on properties of silica-filled SBR/NR tire tread compounds. Rubber Chem Technol 89:240–250. https://doi.org/10.5254/RCT.15.84859

    Article  CAS  Google Scholar 

  54. Dinkel J (1995) Where the silica meets the road. Discover 16:32–33

    Google Scholar 

  55. Zaeimoedin Z (2019) Development of ENR-based compounds for green tire tread applications with improved performance, processing characteristics and sustainability. Loughborough University, Loughborough. https://doi.org/10.26174/thesis.lboro.9948320.v1

    Book  Google Scholar 

  56. Sae-Oui P, Suchiva K, Sirisinha C, Intiya W, Yodjun P, Thepsuwan U (2017) Effects of blend ratio and SBR type on properties of carbon black-filled and silica-filled SBR/BR tire tread compounds. Adv Mater Sci Eng 2017:1–8. https://doi.org/10.1155/2017/2476101

    Article  CAS  Google Scholar 

  57. Robak B, Rogoża J, Łapkowski M (2019) Low-molecular-weight styrene-butadiene copolymers (L-SSBR) as processing aids used for silica-filled rubber: Synthesis, functionalization and application. J Elastomers Plast 51:244–261. https://doi.org/10.1177/0095244318784611

    Article  CAS  Google Scholar 

  58. Takino H, Nakayama R, Yamada Y, Kohjiya S, Matsuo T (1997) Viscoelastic properties of elastomers and tire wet skid resistance. Rubber Chem Technol 70:584–594. https://doi.org/10.5254/1.3538445

    Article  CAS  Google Scholar 

  59. Surya I, Ismail H (2016) The effect of the addition of alkanolamide on properties of carbon black-filled natural rubber (SMR-L) compounds cured using various curing systems. Polym Test 50:276–282. https://doi.org/10.1016/j.polymertesting.2016.01.014

    Article  CAS  Google Scholar 

  60. Surya I, Ismail H, Azura AR (2014) The comparison of alkanolamide and silane coupling agent on the properties of silica-filled natural rubber (SMR-L) compounds. PolymTest 40:24–32. https://doi.org/10.1016/j.polymertesting.2014.08.007

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Taghvaei-Ganjali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamrahjou, N., Sadat-Mansouri, S.N., Taghvaei-Ganjali, S. et al. Calix[4]arene phosphonato derivative as a novel and capable processing aid agent for improving dynamic, mechanical, and thermal behavior of tire tread rubber compounds. Iran Polym J 31, 729–740 (2022). https://doi.org/10.1007/s13726-022-01026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01026-y

Keywords

Navigation