Skip to main content
Log in

Hydrolytic stability of sulfonic acid-containing polyimides for fuel cell membranes

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The long-term stability of sulfonic acid-containing polyimides has been investigated. The hydrolytic degradation of homopolyimide and the block copolyimide comprising 27 mol% of 2,2′-bis(trifluoromethyl)benzidine and 9 mol% ofm-phenylenediamine (BTFMB27mP10[7/(3+1)]), was quantified through viscosity measurements and FT-IR spectroscopic analyses. The viscosity decrease with respect to time and the degradation rate were similar. The degrees of degradation with respect to time under ambient conditions and at elevated temperature in water were monitored by FT-IR spectroscopy. A new absorption peak was observed at 1786 cm−1, which we corresponds to the presence of anhydride end groups formed by hydrolytic scission of the imide rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-J. Kim and M. H. Litt,Polym. Prepr.,42, 486 (2001).

    CAS  Google Scholar 

  2. Y. Zhang, M. H. Litt, H. Jiang, R. F. Savinell, and J. S. Wainright,5th European Technical Symposium on Polyimides and high Performance Functional Polymers, France, 3-5 May, 1999.

  3. H.-J. Kim, “Synthesis and Characterization of Sulfonic Acid Containing Polyimides for Polymer Electrolyte Membranes for Fuel Cell Applications”, Ph.D. Thesis, Case Western Reserve University, Cleveland OH, 2002.

    Google Scholar 

  4. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, and K. L. Oliver,J. Polym. Sci. A1,3, 1373 (1965).

    CAS  Google Scholar 

  5. R. Deiasi and J. Russell,J. Appl. Polym. Sci.,15, 2965 (1971). (b) R. Deiasi,J. Appl. Polym. Sci.,17, 659 (1973).

    Article  CAS  Google Scholar 

  6. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri,Polymer,42, 359 (2001).

    Article  CAS  Google Scholar 

  7. (7)C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, and M. Pineri,Polymer,42, 5097 (2001).

    Article  CAS  Google Scholar 

  8. S. R. Rafikov, S. A. Pavlova, and I. I. Tverdokhlebova,Israel Program for Scientific Translations, Jerusalem, Israel, 1964, pp 302–336.

  9. M. Kurata and Y. Tsunashima, inPolymer Handbook, J. Brandrup and E. H. Immergut, Eds., Wiley, New York, 1975, pp VII 1–60.

    Google Scholar 

  10. D. A. Ravens and J. E. Sisley, inChemical Reactions of Polymers, E. M. Fettes, Ed., Wiley, New York, 1964, pp 551–721.

    Google Scholar 

  11. C. Pouchert,The Aldrich Library of FT-IR Spectra, Edition I, 1985, vol. 2, p 243 and p 336.

    Google Scholar 

  12. H.-J. Kim, M. Litt, S. Y. Nam, and E.-M. Shin,Macromol. Res.,11, 141 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Litt, M.H., Shin, EM. et al. Hydrolytic stability of sulfonic acid-containing polyimides for fuel cell membranes. Macromol. Res. 12, 545–552 (2004). https://doi.org/10.1007/BF03218442

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218442

Keywords

Navigation