Skip to main content

Abstract

Aiming at intermediate temperature operation (100–150 °C), composite polymer electrolyte membranes consisting of perfluorosulfonic acid (PFSA) ionomer and inorganic fillers, particularly short-side chain perfluorosulfonic membranes, e.g., Aquivion® membranes with an equivalent weight of 790–850 g eq−1 and their composites with inorganic fillers represent a practical approach to advanced membrane materials. This chapter is devoted to an updated review of the methodologies and materials including their practical applications in direct alcohol fuel cells, water electrolysers, and automotive hydrogen fuel cells. An analysis of the basic operation mechanism of such materials is provided and the characteristic performances achieved under intermediate temperature operation are reviewed. The influence of the surface chemistry and acid–base characteristics of the inorganic fillers is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aricò AS, Siracusano S, Briguglio N et al (2013) Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J Appl Electrochem 43:107–118

    Article  Google Scholar 

  2. Aricò AS, Di Blasi A, Brunaccini G et al (2010) Investigation of proton exchange membrane fuel cell stacks for high temperature operation. Fuel Cells 10:1013–1023

    Article  Google Scholar 

  3. Arico AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161

    Article  Google Scholar 

  4. Aricò AS, Creti P, Antonucci PL et al (1998) Comparison of ethanol and methanol oxidation in a liquid-feed solid polymer electrolyte fuel cell at high temperature. Electrochem Solid-State Lett 1:66–68

    Article  Google Scholar 

  5. Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J Power Sources 102:242–252

    Article  Google Scholar 

  6. Aricò AS, Baglio V, Antonucci V (2008) Composite membranes for high temperature direct methanol fuel cells. In: Peinemann KV, Nunes SP (eds) Membrane for energy conversion. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 123–168

    Google Scholar 

  7. Aricò AS, Baglio V, Di Blasi A et al (2003) Influence of the acid-base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics 161:251–265

    Article  Google Scholar 

  8. Li Q, Jensen JO (2008) Membranes for HT-PEMFC based on acid doped polybenzimidazoles. In: Peinemann KV, Nunes SP (eds) Membrane for energy conversion. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 61–96

    Google Scholar 

  9. Savadogo O (1998) Emerging membranes for electrochemical systems. J New Mater Electrochem Syst 1:47–66

    Google Scholar 

  10. Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154

    Article  Google Scholar 

  11. Ruffmann B, Silva H, Schulte B (2003) Organic/inorganic composite membranes for application in DMFC. Solid State Ionics 162–163:269–275

    Article  Google Scholar 

  12. Jung DH, Cho SY, Peck DH et al (2003) Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell. J Power Sources 118:205–211

    Article  Google Scholar 

  13. Yang C, Srinivasan S, Aricò AS et al (2001) Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem Solid-State Lett 4:A31–A34

    Article  Google Scholar 

  14. Aricò AS, Baglio V, Di Blasi A et al (2003) FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes. Electrochem Commun 5:862–866

    Article  Google Scholar 

  15. Aricò AS, Baglio V, Di Blasi A et al (2004) Surface properties of inorganic fillers for application in composite membranes-direct methanol fuel cells. J Power Sources 128:113–118

    Article  Google Scholar 

  16. Lufrano F, Baglio V, Staiti P et al (2008) Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells. J Power Sources 179:34–41

    Article  Google Scholar 

  17. Aricò AS, Baglio V, Di Blasi A et al (2006) Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells. Desalination 199:271–273

    Article  Google Scholar 

  18. Barbir F (2005) PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy 78:661–669

    Article  Google Scholar 

  19. Millet P, Mbemba N, Grigoriev SA et al (2011) Electrochemical performances of PEM water electrolysis cells and perspectives. Int J Hydrogen Energy 36:4134–4142

    Article  Google Scholar 

  20. Antonucci V, Di Blasi A, Baglio V et al (2008) High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser. Electrochim Acta 53:7350–7356

    Article  Google Scholar 

  21. Arcella V, Ghielmi A, Tommasi G (2003) High performance perfluoropolymer films for membranes. Ann N Y Acad Sci 984:226–244

    Article  Google Scholar 

  22. Ghielmi A, Vaccarono P, Troglia C et al (2005) Proton exchange membranes based on short-side chain perfluorinated ionomer. J Power Sources 145:108–115

    Article  Google Scholar 

  23. Arcella V, Troglia C, Ghielmi A (2005) Hyflon ion membranes for fuel cells. Ind Eng Chem Res 44:7646–7651

    Article  Google Scholar 

  24. Merlo L, Ghielmi A, Cirillo L et al (2007) Membrane electrode assemblies based on Hyflon ion for an evolving fuel cell technology. Sep Sci Technol 42:2891–2908

    Article  Google Scholar 

  25. Peron J, Nedellec Y, Jones DJ et al (2008) The effect of dissolution, migration precipitation of platinum in Nafion®-based membrane electrode assemblies during fuel cell operation at high potential. J Power Sources 185:1209–1217

    Article  Google Scholar 

  26. Stassi A, Gatto I, Passalacqua E et al (2011) Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation. J Power Sources 196:8925–8930

    Article  Google Scholar 

  27. Siracusano S, Baglio V, Stassi A et al (2014) Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis. J Membr Sci 466:1–7

    Article  Google Scholar 

  28. Skulimowska A, Dupont M, Zaton M et al (2014) Proton exchange membrane water electrolysis with short-side-chain Aquivion® membrane and IrO2 anode catalyst. Int J Hydrogen Energy 39:6307–6316

    Article  Google Scholar 

  29. Chandan A, Hattenberger M et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278

    Article  Google Scholar 

  30. Gasteiger HA, Kocha SS, Sompalli B et al (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35

    Article  Google Scholar 

  31. Li Q, Jensen JO, Pan C et al (2008) Partially fluorinated arylene polyethers and their ternary blends with PBI and H3PO4: Part II. Characterisation and fuel cell tests of the ternary membranes. Fuel Cells 8:188–199

    Article  Google Scholar 

  32. Aricò AS, Stassi A, Gatto I et al (2010) Surface properties of Pt-based electro-catalysts and their influence on performance and degradation of high temperature polymer electrolyte fuel cells. J Phys Chem C 114:15823–15836

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino S. Aricò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aricò, A.S. et al. (2016). Modifications of Sulfonic Acid-Based Membranes. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics