Skip to main content
Log in

Evaluation of internal structure and morphology of poly(benzyl ether) dendrimers by molecular dynamics simulations

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We performed molecular dynamics (MD) simulations at 300 K on a series of poly(benzyl ether) (PBE) dendrimers having a different core functionalities. We used the rotational isomeric state Metropolis Monte Carlo (RMMC) method to construct the initial configuration in a periodic boundary cell (PBC) before the MD simulations were undertaken. To elucidate the effects that the structural features have on the chain dimension, the overall internal structure, and the morphology, we monitored the radii of gyration,Rg, and the conformational changes during the simulations. The PBE dendrimers in a glassy state adopted less-extended structures when compared with the conformations obtained from the RMMC calculations. We found thatRg of the PBE dendrimer depends on the molecular weight,M, according to the relation,R g M 0.22. The radial distributions of the dendrimers were developed identically in the PBC, irrespective of the core functionality. A gradual decrease in radial density resulted from the fact that the terminal branch ends are distributed all over the molecule, except for the core region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Hawker and J. M. J. Fretchet,J Chem. Soc., Chem. Commun.,15, 1010 (1990).

    Article  Google Scholar 

  2. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, S. Martin, J. Roeck, J. Ryder, and P. Smith,Polym. J.,17, 117 (1985).

    Article  CAS  Google Scholar 

  3. D. A. Tomalia and L. R. Wilson,U.S. Patent, 4,713,975 (1987).

  4. $F. M. Winnik, A. R. Davidson, and M. P. Breton,U.S. Patent, 5,120,361 (1992).

  5. D. A. Tomalia and P. R. Dvornic,Nature,372, 617 (1994).

    Article  CAS  Google Scholar 

  6. C. Kim, B. W. Koo, S. B. Lee, and C. K. Song,Macromol. Res.,10, 178 (2002).

    Article  CAS  Google Scholar 

  7. L. J. Twyman, A. E. Beezer, R. Esfand, M. J. Hardy, and J. C. Mitchell,Tetrahedron Lett.,40, 1743 (1999).

    Article  CAS  Google Scholar 

  8. E. C. Wiener, M. W. Brechbiel, H. Brothers, R. L. Magin, O. A. Gansow, D. A. Tomalia, and P. C. Lauterbur,Magn. Reson. Med.,31, 1 (1994).

    Article  CAS  Google Scholar 

  9. J. Haensler and F. C. Szoka,Bioconjugate Chem.,4, 372 (1993).

    Article  CAS  Google Scholar 

  10. M. F. Ottaviani, F. Furini, A. Casini, N. J. Turro, S. Jockusch, D. A. Tomalia, and L. Messori,Macromolecules,33, 7842 (2000).

    Article  CAS  Google Scholar 

  11. C. Rao and J. P. Tam,J. Am. Chem. Soc.,116, 975 (1994).

    Article  Google Scholar 

  12. R. L. Lescanec and M. Muthukumar,Macromolecules,23, 2280 (1990).

    Article  CAS  Google Scholar 

  13. M. Ballauff,Top. Curr. Chem.,212, 177 (2001).

    Article  CAS  Google Scholar 

  14. S. Hecht and J. M. J. Fretchet,J. Am. Chem. Soc.,121, 4084 (1999).

    Article  CAS  Google Scholar 

  15. P. G. de Gennes and H. Hervet,J. Phys. Lett.,44, L351 (1983).

    Article  Google Scholar 

  16. K. J. Naidoo, S. J. Hughes, and J. R. Moss,Macromolecules,32, 331 (1999).

    Article  CAS  Google Scholar 

  17. I. Lee, B. D. Athey, A. W. Wetzel, W. Meixner, and J. R. Baker, Jr.,Macromolecules,35, 4510 (2002).

    Article  CAS  Google Scholar 

  18. N. Zacharopoulos and I. G. Economou,Macromolecules,35, 1814 (2002).

    Article  CAS  Google Scholar 

  19. S. H. Yang, J. S. Yang, and W. H. Jo,Korea Polym. J.,8, 224 (2000).

    CAS  Google Scholar 

  20. S. S. Choi,Korea Polym. J.,8, 125 (2000).

    CAS  Google Scholar 

  21. J. D. Honneycutt,Compt. Theor. Polym. Sci.,8, 1 (1998).

    Article  Google Scholar 

  22. D. Boris and M. Rubinstein,Macromolecules,29, 7251 (1996).

    Article  CAS  Google Scholar 

  23. M. Murat and G. S. Grest,Macromolecules,29, 1278 (1996).

    Article  CAS  Google Scholar 

  24. A. M. Naylor, N. A. Goddard, G. E. Kiefer, and D. A. Tomalia,J. Am. Chem. Soc.,111, 2339 (1989).

    Article  CAS  Google Scholar 

  25. M. L. Mansfield and L. I. Klushin,Macromoleucles,26, 4262 (1993).

    Article  CAS  Google Scholar 

  26. M. L. Mansfield,Macromoleucles,33, 8043 (2000).

    Article  CAS  Google Scholar 

  27. E. J. Wallace, D. M. A. Buzza, and D. J. Read,Macromolecules,34, 7140 (2001).

    Article  CAS  Google Scholar 

  28. W. L. Jorgenssen and J. Tirado-Ries,J. Phys. Chem.,100, 14508 (1996).

    Article  Google Scholar 

  29. H. Sun,J. Comp. Chem.,15, 752 (1994).

    Article  CAS  Google Scholar 

  30. D. Rigby, H. Sun, and B. E. Eichinger,Polymer Int.,44, 311 (1997).

    Article  CAS  Google Scholar 

  31. H. Sun and D. Rigby,Spectrochimica Acta Part A,53, 1301 (1997).

    Article  Google Scholar 

  32. T. H. Mourey, S. R. Turner, M. Rubinstein, J. M. J. Fretchet, C. J. Hawker, and K. L.Wooley,Macromolecules,25, 2401 (1992).

    Article  CAS  Google Scholar 

  33. S. de Backer, Y. Prinzie, W. Verheijen, M. Smet, K. Desmedt, W. Dehaen, and F. C. de Schryver,J. Phys. Chem. A,102, 5451 (1998).

    Article  Google Scholar 

  34. K. Jung, H. Kim, and J. Liu,Korea Polym. J.,8, 59 (2000).

    CAS  Google Scholar 

  35. B. H. Zimm and W. H. Stockmayer,J. Chem. Phys.,17, 1301 (1949).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, T., Kim, HI. Evaluation of internal structure and morphology of poly(benzyl ether) dendrimers by molecular dynamics simulations. Macromol. Res. 12, 178–188 (2004). https://doi.org/10.1007/BF03218386

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218386

Keywords

Navigation