Skip to main content
Log in

A new Rhodamine-based turn-on fluorescent chemosensor for Fe3+

  • Original Paper
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

We have developed and characterized a new Rhodamine-based Fe3+ selective fluorescent turn-on chemosensor. A new Rhodamine-based fluorescent sensor Rh1 was synthesized by condensation and reduction of compound 1 with Salicylaldehyde. Fluorescent sensor Rh1 exhibited a good selectivity and little interference toward Fe3+ over other metal ions in acetonitrile. Fluorescent sensor Rh1 was colorless and non-fluorescent in the absence of Fe3+, pink color and strong fluorescence was observed after addition of Fe3+. Since the fluorescent sensor Rh1 undergoes 1,000 fold increase in fluorescence intensity along with color change upon binding with Fe3+, implying possible applications in a variety of area such as environmental monitoring and diag]nostic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brugnara, C. Iron deficiency and erythropoiesis: new diag]nostic approaches.Clin. Chem. 49, 1573–1578 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Beard, J. Iron deficiency alters brain development and functioning.J. Nutr. 133, 1468S-1472S (2003).

    PubMed  CAS  Google Scholar 

  3. Egan, T.J.et al.Structure-function relationships in aminoquinolines: effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of beta-hematin formation, and antiplasmodial activity.J. Med. Chem. 43, 283–291 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. http://www.epa.gov/ogwdw000/consumer/2ndstandar ds.html.

  5. Gunnlaugsson, T., Leonard, J. P. & Murray, N. S. Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor.Org. Lett. 6, 1557–1560 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Royzen, M., Dai, Z. & Canary, J. W. Ratiometric displacement approach to Cu(II) sensing by fluorescence.J. Am. Chem. Soc. 127, 1612–1613 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Krämer, R. Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive.Angew. Chem., Int. Ed. 37, 772–773 (1998).

    Article  Google Scholar 

  8. Jiang, P. J. & Guo, Z. J. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors.Coord. Chem. Rev. 248, 205–229 (2004).

    Article  CAS  Google Scholar 

  9. Zeng, L., Miller, E. W., Pralle, A., Isacoff, E. Y. & Chang, C. J. A selective turn-on fluorescent sensor for imag]ing copper in living cells.J. Am. Chem. Soc. 128, 10–11 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. Xiang, Y. & Tong, A. A new rhodamine-based chemosensor exhibiting selective FeIII-smplified fluorescence.Org. Lett. 8, 1549–1552 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Bricks, J. L.et al.On the development of sensor molecules that display FeIII-amplified fluorescence.J. Am. Chem. Soc. 127, 13522–13529 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, M.et al.A selective turn-on fluorescent sensor for FeIII and application to bioimag]ing.Tetrahedron Lett. 48, 3709–3712 (2007).

    Article  CAS  Google Scholar 

  13. Bricks, J. L.et al.On the development of sensor molecules that display FeIII-amplified fluorescence.J. Am. Chem. Soc. 127, 13522–13529 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Tumambac, G. E., Rosencrance, C. M. & Wolf, C. Selective metal ion recognition using a fluorescent 1,8-diquinolylnaphthalene-derived sensor in aqueous solution.Tetrahedron 60, 11293–11297 (2004).

    Article  CAS  Google Scholar 

  15. Ma, L., Luo, W., Quinn, P. J., Liu, Z. & Hider, R. C. Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensors.J. Med. Chem. 47, 6349–6362 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Weizman, H.et al.Fluorescently-labeled ferrichrome analogs as probes for receptor-mediated, microbial iron uptake.J. Am. Chem. Soc. 118, 12368–12375 (1996).

    Article  CAS  Google Scholar 

  17. Xiang, Y., Tong, A.-J., Jin, P.-Y. & Ju, Y. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity.Org. Lett. 8, 2863–2866 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Kim, H. N., Lee, M. H., Kim, H. J. & Kim, J. S. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions.Chem. Soc. Rev. 37, 1465–1472 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ik Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, T., Yang, S.I. A new Rhodamine-based turn-on fluorescent chemosensor for Fe3+ . Toxicol. Environ. Health. Sci. 2, 73–77 (2010). https://doi.org/10.1007/BF03216515

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216515

Keywords

Navigation