Skip to main content
Log in

Molecular characterization of Polish patients with familial hypercholesterolemia: novel and recurrentLDLR mutations

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Autosomal dominant hypercholesterolemia (ADH) is caused by mutations in the genes coding for the low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9). In this study, a molecular analysis ofLDLR andAPOB was performed in a group of 378 unrelated ADH patients, to explore the mutation spectrum that causes hypercholesterolemia in Poland. All patients were clinically diagnosed with ADH according to a uniform protocol and internationally accepted WHO criteria. Mutational analysis included all exons, exon-intron boundaries and the promoter sequence of theLDLR, and a fragment of exon 26 ofAPOB. Additionally, the MLPA technique was applied to detect rearrangements withinLDLR. In total, 100 sequence variations were identified in 234 (62%) patients. WithinLDLR, 40 novel and 59 previously described sequence variations were detected. Of the 99LDLR sequence variations, 71 may be pathogenic mutations. The most frequentLDLR alteration was a point mutation p.G592E detected in 38 (10%) patients, followed by duplication of exons 4–8 found in 16 individuals (4.2%). Twenty-five cases (6.6%) demonstrated the p.R3527Q mutation ofAPOB. Our findings imply that major rearrangements of theLDLR gene as well as 2 point mutations (p.G592E inLDLR and p.R3527Q inAPOB) are frequent causes of ADH in Poland. However, the heterogeneity ofLDLR mutations detected in the studied group confirms the requirement for complex molecular studies of Polish ADH patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. 2003. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34: 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Bednarska-Makaruk M, Bisko M, Pulawska MF, Hoffman-Zacharska D, Rodo M, Roszczynko M, et al. 2001. Familial defective apolipoprotein B-100 in a group of hypercholesterolaemic patients in Poland. Identification of a new mutation Thr3492Ile in the apolipoprotein B gene. Eur J Hum Genet 9: 836–842.

    Article  CAS  PubMed  Google Scholar 

  • Boren J, Ekstrom U, Agren B, Nilsson-Ehle P, Innerarity TL, 2001. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem 276: 9214–9218.

    Article  CAS  PubMed  Google Scholar 

  • Brusgaard K, Jordan P, Hansen H, Hansen AB, Horder M, 2006. Molecular genetic analysis of 1053 Danish individuals with clinical signs offamilial hypercholesterolemia. Clin Genet 69: 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Civeira F, Ros E, Jarauta E, Plana N, Zambon D, Puzo J, et al. 2008. Comparison ofgenetic versus clinical diagnosis in familial hypercholesterolemia. Am J Cardiol 102: 1187–1193, 1193.e1.

    Article  CAS  PubMed  Google Scholar 

  • Fisher E, Scharnagl H, Hoffmann MM, Kusterer K, Wittmann D,Wieland H, et al. 1999. Mutations in the apolipoprotein (apo) B-100 receptor-binding region: detection of apo B-100 (Arg3500—>Trp) associated with two new haplotypes and evidence that apo B-100 (Glu3405—>Gln) diminishes receptor-mediated uptake of LDL. Clin Chem 45: 1026–1038.

    CAS  PubMed  Google Scholar 

  • Fokkema IF, den Dunnen JT, Taschner PE, 2005. LOVD: easy creation of a locus-specific sequence variation database using an “LSDB-in-a-box” approach. Hum Mutat 26: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Fouchier SW, Kastelein JJ, Defesche JC, 2005. Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum Mutat 26: 550–556.

    Article  CAS  PubMed  Google Scholar 

  • Gaffney D, Reid JM, Cameron IM, Vass K, Caslake MJ, Shepherd J, et al. 1995. Independent mutations at codon 3500 of the apolipoprotein B gene are associated withhyperlipidemia. Arterioscler Thromb Vasc Biol 15: 1025–1029.

    CAS  PubMed  Google Scholar 

  • Gorski B, Kubalska J, Naruszewicz M, Lubinski J, 1998. LDL-R and Apo-B-100 gene mutations in Polish familial hypercholesterolemias. Hum Genet 102: 562–565.

    Article  CAS  PubMed  Google Scholar 

  • Hamalainen T, Palotie A, Aalto-Setala K, Kontula K, Tikkanen MJ, 1990. Absence of familial defective apolipoprotein B-100 in Finnish patients with elevated serum cholesterol. Atherosclerosis 82: 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Heath KE, Gudnason V, Humphries SE, Seed M, 1999. The type of mutation in the low density lipoprotein receptor gene influences the cholesterol-loweringresponse of the HMG-CoA reductase inhibitor simvastatin in patients with heterozygous familial hypercholesterolaemia. Atherosclerosis 143: 41–54.

    Article  CAS  PubMed  Google Scholar 

  • Kalina A, Csaszar A, Czeizel AE, Romics L, Szaboki F, Szalai C, et al. 2001. Frequency of the R3500Q mutation of the apolipoprotein B-100 gene in a sample screened clinically for familial hypercholesterolemia in Hungary. Atherosclerosis 154: 247–251.

    Article  CAS  PubMed  Google Scholar 

  • Kotze MJ, Peeters AV, Langenhoven E, Wauters JG, Van Gaal LF, 1994. Phenotypic expression and frequency of familial defective apolipoprotein B-100 in Belgian hypercholesterolemics. Atherosclerosis 111: 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Kubalska J, Chmara M, Limon J, Wierzbicka A, Prokurat S, Szaplyko J, et al. 2008. Clinical course of homozygous familial hypercholesterolemia during childhood: report on 4 unrelated patients with homozygous or compound heterozygous mutations in the LDLR gene. J Appl Genet 49: 109–113.

    Article  PubMed  Google Scholar 

  • Kuhrova V, Francova H, Zapletalova P, Freiberger T, Fajkusova L, Hrabincova E, et al. 2002. Spectrum of low density lipoprotein receptor mutations in Czech hypercholesterolemic patients. Hum Mutat 19: 80.

    Article  PubMed  Google Scholar 

  • Leren TP, Tonstad S, Gundersen KE, Bakken KS, Rodningen OK, Sundvold H, et al. 1997. Molecular genetics of familial hypercholesterolaemia in Norway. J Intern Med 241: 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Liyanage KE, Hooper AJ, Defesche JC, Burnett JR, van Bockxmeer FM, 2008. High-resolution melting analysis for detection of familial ligand-defective apolipoprotein B-100 mutations. Ann Clin Biochem 45: 170–176.

    Article  CAS  PubMed  Google Scholar 

  • Lombardi MP, Redeker EJ, Defesche JC, Kamerling SW, Trip MD, Mannens MM, et al. 2000. Molecular genetic testing for familial hypercholesterolemia: spectrum of LDL receptor gene mutations in The Netherlands. Clin Genet 57: 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Miserez AR, Laager R, Chiodetti N, Keller U, 1994. High prevalence of familial defective apolipoprotein B-100 in Switzerland. J Lipid Res 35: 574–583.

    CAS  PubMed  Google Scholar 

  • Nissen H, Hansen PS, Faergeman O, Horder M, 1995. Mutation screening of the codon 3500 region of the apolipoprotein B gene by denaturing gradient-gel electrophoresis. Clin Chem 41: 419–423.

    CAS  PubMed  Google Scholar 

  • Plewa R, Luczak M, Burchardt P, Bolewski A, Wierzchowiecki J, Siminiak T, 2006. Monogenic hypercholesterolaemias—an evaluation of apolipoprotein B100 and LDL receptor gene polymorphisms. Kardiol Pol 64: 127–133; discussion 134.

    PubMed  Google Scholar 

  • Pullinger CR, Hennessy LK, Chatterton JE, Liu W, Love JA, Mendel CM, et al. 1995. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest 95: 1225–1234.

    Article  CAS  PubMed  Google Scholar 

  • Schuster H, Rauh G, Muller S, Keller C, Wolfram G, Zollner N, 1992. Allele-specific and asymmetric polymerase chain reaction amplification in combination: a one step polymerase chain reaction protocol for rapid diagnosis of familial defective apolipoprotein B-100. Anal Biochem 204: 22–25.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz EI, Shevtsov SP, Kuchinski AP, Kovalev Y, Plutalov OV, Berlin Y, 1991. Approach to identification of a point mutation in apo B100 gene by means of a PCR-mediated site-directed mutagenesis. Nucleic Acids Res 19: 3752.

    Article  CAS  PubMed  Google Scholar 

  • Soufi M, Sattler AM, Maerz W, Starke A, Herzum M, Maisch B, et al. 2004. A new but frequent mutation of apoB-100-apoB His3543Tyr. Atherosclerosis 174: 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Talmud PJ, Tamplin OJ, Heath K, Gaffney D, Day IN, Humphries SE, 1996. Rapid testing for three mutations causing familial defective apolipoprotein B100 in 562 patients with familial hypercholesterolaemia. Atherosclerosis 125: 135–137.

    Article  CAS  PubMed  Google Scholar 

  • [WHO] World Health Organisation 1999. Familial hypercholesterolemia: Report of a second WHO consultation. Geneva: WHO Human Genetics Programme. WHO/HGN/FH/Cons/99.2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chmara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chmara, M., Wasąg, B., Żuk, M. et al. Molecular characterization of Polish patients with familial hypercholesterolemia: novel and recurrentLDLR mutations. J Appl Genet 51, 95–106 (2010). https://doi.org/10.1007/BF03195716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195716

Keywords

Navigation