Skip to main content
Log in

Chromosomal localization of a novel repetitive sequence in theChenopodium quinoa genome

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

In this study, a novel repetitive sequence pTaq10 was isolated from theTaq I digest of the genomic DNA of the pseudocerealChenopodium quinoa. Sequence analysis indicated that this 286-bp monomer is not homologous to any known retroelement sequence. FISH and Southern blot analysis showed that this sequence is characterized by an interspersed genomic organization. After FISH, hybridization signals were observed as small dots spread throughout all of the chromosomes. pTaq hybridization signals were excluded from 45S rRNA gene loci, but they partly overlapped with 5S rDNA loci. pTaq10 is not a species-specific sequence, as it was also detected inC. berlandieri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananiev EV, Voles MI, Phillips RL, Rines HW, 2002. Isolation of A/D and C genome-specific dispersed and clustered repetitive DNA sequences fromAvena sativa. Genome 45: 431–441.

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, 1998. The structure and evolution of angiosperm nuclear genomes. Curr Opin Plant Biol 1: 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T, 1997. Comparative analysis of the chromosomal and genomic organization ofTy1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33: 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Dechyeva D, Gindullis F, Schmidt T, 2003. Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beetBeta procumbens. Chromosome Res 11: 3–21.

    Article  CAS  PubMed  Google Scholar 

  • Do GS, Seo BB, Yamamoto M, Suzuki G, Mukai Y, 2001. Identification and chromosomal location of tandemly repeated DNA sequences inAllium cepa. Genes Genet Syst 76: 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. PhytochemBull 19: 11–15.

    Google Scholar 

  • Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH, 1996. High resolution physical mappinginArabidopsis thaliana and tomato by fluorescentin situ hybridization to extended DNA fibers. Plant J 9: 421–430.

    Article  CAS  PubMed  Google Scholar 

  • Frediani M, Gelati MT, Maggini F, Galasso I, Minelli S, Ceccarelli M, Cionini PG, 1999. A family of dispersed repeats in the genome of theViciafaba: structure, chromosomal organization, redundancy modulation, and evolution. Chromosoma 108: 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Galasso I, Blanco A, Katsiotis A, Pignone D, Heslop-Harrison JS, 1997. Genomic organization and phylogenetic relationships in the genusDasypyrum analysed by Southern andin situ hybridization of total genomic and cloned DNA probes. Chromosoma 106: 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach WL, Dyer TA, 1980. Sequence organization of the repeating units in the nucleus of wheat, which contain 5S rRNA genes. Nucl Acids Res 11: 4851–4865.

    Article  Google Scholar 

  • Hanson RE, Zhao X-P, Islam-Faridi MN, Paterson AH, Zwick MS, Crane CF, et al. 1998. Evolution of interspersed repetitive elements inGossypium (Malvaceae). Am J Bot 85: 1364–1368.

    Article  Google Scholar 

  • Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J, 2001. Ribosomal DNA is an effective marker ofBrassica chromosomes. Theor Appl Genet 103: 486–490.

    Article  CAS  Google Scholar 

  • Kolano B, Gomez Pando L, Maluszynska J, 2001. Molecular cytogenetic studies inChenopodium quinoa andAmaranthus caudatus. Acta Soc Bot Pol 70: 85–90.

    CAS  Google Scholar 

  • Kubis S, Schmidt T, Heslop-Harrison JS, 1998. Repetitive DNA elements as a major component of plant genomes. Ann Bot 82: 45–55.

    Article  CAS  Google Scholar 

  • Kumar A, Bennetzen JL, 1999. Plant retrotransposons. Annu Rev Genet 33: 479–532.

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, et al. 2004. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109: 1188–1195.

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio, ARojas J, et al. 2006. Molecular and cytological characterization of ribosomal RNA genes inChenopodium quinoa andChenopodium berlandieri. Genome 49: 825–839.

    Article  CAS  PubMed  Google Scholar 

  • Neumann P, Nouzona M, Macas J, 2001. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 4: 716–728.

    Article  Google Scholar 

  • Popenoe H, King SR, Leon J, Kalinowski LS, 1989. Lost crops of the Incas. In: Vietmeyer ND, ed. Little-known plants of the Andes with promise for worldwide cultivation. Washington: National Academy Press: 139–161.

    Google Scholar 

  • Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Andersen WR, 1999. Genetic relationship among 19 accessions of six species ofChenopodium L., by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica 105: 25–32.

    Article  Google Scholar 

  • Schmidt T, Heslop-Harrison JS, 1996. High-resolution mapping of repetitive DNA byin situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet speciesBeta procumbens. Plant Mol Biol 30: 1099–1114.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Kubis S, Heslop-Harrison JS, 1995. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.):LINEs and Ty1-copia-like elements as major components of the genome. Chromosome Res 3: 335–345.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Kubis S, Katsiotis A, Jung C, Heslop-Harrison JS, 1998. Molecular and chromosomal organization of two repetitive DNA sequences with intercalary locations in sugar beet and otherBeta species. Theor Appl Genet 97: 696–704.

    Article  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P, 2000. Practicalin situ hybridization. Oxford: BIOS Scientific Publishers LTD.

    Google Scholar 

  • Shahmuradov IA, Akbarova YY, Solovyev VV, Aliyev JA, 2003. Abundance of plastid DNA insertions in nuclear genomes of rice andArabidopsis. Plant Mol Biol 52: 923–934.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Raina SN, 2005. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109: 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Unfriend I, Gruendler P, 1990. Nucleotide sequence of the 5.8S and 25S rRNA genes and the internal transcribed spacers fromArabidopsis thaliana. Nucl Acids Re 18: 4011.

    Article  Google Scholar 

  • Vitte C, Panaud O, 2005. LTR retrotransposons and flowering plant genome size: emergency of the increase/decrease model. Cytogenet Genome Res 110: 91–107.

    Article  CAS  PubMed  Google Scholar 

  • Ward SM, 2000. Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116: 11–16.

    Article  CAS  Google Scholar 

  • Weiss-Schneeweiss H, Stuessy TF, Siljak-Yakovlev S, Baeza CM, Parker J, 2003. Karyotype evolution in South American species ofHypochaeris (Asteraceae, Lactuceae). Plant Syst Evol 241: 171–184.

    Article  Google Scholar 

  • Wilson HD, 1990. Quinua and relatives (Chenopodium sect.Chenopodium subsect.Cellulata. Econ Bot 44: 92–110.

    Article  Google Scholar 

  • Yager LN, Kaumeyer JF, Lee I, Weinberg ES, 1987. Insertion of an intermediate repetitive sequence into a sea urchin histone-gene spacer. Plant Syst Evol 24: 346–356.

    CAS  Google Scholar 

  • Zhang P, Friebe B, Gill BS, 2002. Variation in the distribution of genome specific DNA sequence on chromosomes reveals evolutionary relationships in theTriticum and Aegilops complex. Plant Syst Evol 235: 169–179.

    Article  CAS  Google Scholar 

  • Zhao X, Si Y, Hanson RE, Crane CF, Price JH, Stelly DM, et al. 1998. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8: 479–492.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozena Kolano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolano, B., Plucienniczak, A., Kwasniewski, M. et al. Chromosomal localization of a novel repetitive sequence in theChenopodium quinoa genome. J Appl Genet 49, 313–320 (2008). https://doi.org/10.1007/BF03195629

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195629

Keywords

Navigation