Skip to main content
Log in

Genetic structure is influenced by environmental barriers: empirical evidence from the common voleMicrotus arvalis populations

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

One of the major challenges in population biology is the identification of barriers to gene flow and/or secondary contacts between differentiated entities. The level of genetic differentiation among eight populations of the common voleMicrotus arvalis (Pallas, 1779) around the Biebrza Wetlands, NE Poland was examined by analyzing seven microsatellite loci for 140 voles and testing for the presence of barriers to gene flow. Overall population differentiation was moderate and significant (F ST = 0.081,p < 0.001) and there was no correlation between geographical and genetic distances among populations. We found a relatively high level of genetic variability within the populations studied. This could be explained by male bias in dispersal, a phenomenon recently found inM. arvalis. Patterns of genetic structure visualized in synthetic genetic maps showed clear gradients along a southeast-northwest axis across the study area, as well as the presence of a potential barrier to dispersal. The position of a barrier to gene flow identified using Monmonier’s maximum difference algorithm likely corresponds to humid habitats of the Biebrza Wetlands. These results suggest that the presence of environmental barriers to gene flow and drift may be responsible for the observed spatial genetic structure ofM. arvalis in the Biebrza Valley. Institute of Biology, University of Białystok, OEwierkowa 20 B, 15-950 Białystok, Poland,

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aars J., Dallas J. F., Piertney S. B., Marshall F., Gow J. L., Telfer S. and Lambin X. 2006. Widespread gene flow and high genetic variability in populations of water volesArvicola terrestris in patchy habitats. Molecular Ecology 15: 1455–1466.

    Article  CAS  PubMed  Google Scholar 

  • Balloux F., Brünner H., Lugon-Moulin N., Hausser J. and Goudet J. 2000. Microsatellites can be misleading: an empirical and simulation study. Evolution 54: 1414–1422.

    CAS  PubMed  Google Scholar 

  • Couvet D. 2002. Deleterious effects of restricted gene flow in fragmented populations. Conservation Biology 16: 369–376.

    Article  Google Scholar 

  • Dobly A. 2005. Scent marking by common volesMicrotus arvalis in the presence of a same-sex neighbour. Acta Theriologica 50: 343–356.

    Article  Google Scholar 

  • Fink S., Excoffier L. and Heckel G. 2004. Mitochondrial gene diversity in the common voleMicrotus arvalis shaped by historical divergence and local adaptations. Molecular Ecology 13: 3501–3514.

    Article  CAS  PubMed  Google Scholar 

  • Garnier S., Alibert P., Audiot P., Prieur B. and Rasplus Y. 2004. Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine species,Carabus solieri. Molecular Ecology 13: 1883–1897.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach G. and Musolf K. F. 2000. Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conservation Biology 14: 1066–1074.

    Article  Google Scholar 

  • Goudet J. 1995. FSTAT (version 2.9.3): A computer program to calculateF-statistics. Journal of Heredity 86: 485–486.

    Google Scholar 

  • Hamilton G., Currat M., Ray N., Heckel G., Beaumont M. and Excoffier L. 2005. Bayesian estimation of recent migration rates after a spatial expansion. Genetics 170: 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Hartl G. B., Zachos F. E., Nadlinger K., Ratkiewicz M., Klein F. and Lang G. 2005. Allozyme and mitochondrial DNA analysis of French red deer (Cervus elaphus) populations: genetic structure and its implications for management and conservation. Mammalian Biology 70: 23–34.

    Article  Google Scholar 

  • Haynes S., Jaarola M. and Searle J. B. 2003. Phylogeography of the common vole (Microtus arvalis) with particular emphasis on the colonization of the Orkney archipelago. Molecular Ecology 12: 951–956.

    Article  CAS  PubMed  Google Scholar 

  • Heckel G., Burri R., Fink S., Desmet J.-F. and Excoffier L. 2005. Genetic structure and colonization processes in European populations of the common vole,Microtus arvalis. Evolution 59: 2231–2242.

    CAS  PubMed  Google Scholar 

  • Hewitt G. M. 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87–112.

    Article  Google Scholar 

  • Hutchison D. W. and Templeton A. R. 1999. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53: 1898–1914.

    Article  Google Scholar 

  • Jacobs J. 2003. The response of small mammal populations to flooding. Mammalian Biology 68: 102–111.

    Article  Google Scholar 

  • Jacobs J. and Hempel N. 2003. Effects of farming practices on spatial behaviour of common voles. Journal of Ethology 21: 45–50.

    Google Scholar 

  • Manly B. F. J. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd edn. Chapmann and Hall, London: 1–400.

    Google Scholar 

  • Manni F., Guérard E. and Heyer E. 2004. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Human Biology 76: 173–190.

    Article  Google Scholar 

  • Marshall T. C., Slate J., Kruuk L. E. B. and Pemberton J. M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7: 639–655.

    Article  CAS  PubMed  Google Scholar 

  • Michelat D. and Giraudoux P. 2006. Synchrony between small mammal population dynamics in marshes and adjacent grassland in a landscape of the Jura plateau, France: a ten year investigation. Acta Theriologica 51: 155–162.

    Article  Google Scholar 

  • Miller M. P., Bellinger R., Forsman E. D. and Haig S. M. 2006. Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States. Molecular Ecology 15: 145–159.

    Article  CAS  PubMed  Google Scholar 

  • Monmonier M. 1973. Maximum-difference barriers: an alternative numerical regionalization method. Geographic Analysis 3: 245–261.

    Google Scholar 

  • Peakall R. and Smouse P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.

    Article  Google Scholar 

  • Piertney S. B., MacColl A. D., Bacon P. J. and Dallas J. F. 1998. Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers. Molecular Ecology 7: 1645–54.

    Article  CAS  PubMed  Google Scholar 

  • Prout T. 1981. A note on the island model with sex dependent migration. Theoretical and Applied Genetics 59: 327–332.

    Article  Google Scholar 

  • Raczyński J., Fedyk S., Gębczyńska Z. and Pucek M. 1984. Distribution of Micromammalia against natural differentiation of the Biebrza valley habitats. Polish Ecological Studies 10: 425–445.

    Google Scholar 

  • Raymond M. L. and Rousset F. 1995. GENEPOP (version 1.2), a population genetics software for exact tests and ecumenism. Journal of Heredity 86: 248–249.

    Google Scholar 

  • Rice W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Article  Google Scholar 

  • Riley S. P. D., Pollinger J. P., Sauvajot R. M., York E. C., Bromley C., Fuller T. K. and Wayne R. K. 2006. A southern California freeway is a physical and social barrier to gene flow in carnivores. Molecular Ecology 15: 1733–1741.

    Article  CAS  PubMed  Google Scholar 

  • Somsook S. and Steiner H. M. 1991. Zur Größe des Aktionsraumes vonMicrotus arvalis (Pallas, 1779). Zeitschrift für Säugetierkunde 56: 200–206.

    Google Scholar 

  • Slatkin M. 1993. Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47: 264–279.

    Article  Google Scholar 

  • Weir B. S. and Cockerham C. C. 1984. EstimatingF-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Article  Google Scholar 

  • Young A. G. and Clarke G. M. 2000. Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge: 1–456.

    Google Scholar 

  • van de Zande L., van Apeldoorn R. C., Blijdenstein A. F., de Jong D., van Delden W. and Bijlsma R. 2000. Microsatellite analysis of population structure and genetic differentiation within and between populations of the root vole,Microtus oeconomus in the Netherlands. Molecular Ecology 9: 1651–1656.

    Article  PubMed  Google Scholar 

  • Zima. J. 1999. Microtus arvalis (Pallas, 1778) [In: The Atlas of European Mammals. A. J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Kryštufek, P. J. H. Reinjders, F. Spitzenberger, M. Stubbe, J. B. M.Thissen, V. Vohralik. and J. Zima, eds]. Academic Press, London: 228–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associate Editor was Magdalena Niedziałkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratkiewicz, M., Borkowska, A. Genetic structure is influenced by environmental barriers: empirical evidence from the common voleMicrotus arvalis populations. Acta Theriol 51, 337–344 (2006). https://doi.org/10.1007/BF03195180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195180

Key words

Navigation