Skip to main content
Log in

Validation of the hepatic blood flow rate model for verapamil first-pass metabolism

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The bioavailability of a new retard tablet formulation of verapamil was investigated in a randomized cross-over bioequivalence study on 12 healthy subjects. The drug was given in the form of a single 240-mg oral dose of a new retard tablet formulation, or as a standard retard tablet at the same dose to all subjects, followed by a single intravenous (i.v.) dose of 5 mg to 8 of the 12 subjects. Plasma verapamil concentrations were determined by a high performance liquid chromatography (HPLC) method. The bioavailability of the new peroral retard formulation was (20.00±4.30)% and was in reasonable agreement with that determined for the already registered verapamil retard formulation, i.e. (19.46±4.02)%, thereby indicating bioequivalence. For the prediction of systemic availability and estimation of the first-pass metabolism, only based on the data for peroral plasma levels, a hepatic blood flow rate limited model was used. In our experience, this model has been found to be extremely useful in providing reasonable estimates of verapamil first-pass effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibakii M., Boyes R.N., Feldman S. (1971): Influence of first-pass effect on availability of drugs on oral administration. J. Pharm. Sci., 60, 1338–1340.

    Article  Google Scholar 

  2. Perrier D., Gibaldi M., Boyes R.N. (1973): Prediction of systemic availability from plasma-level data after oral drug administration. J. Pharm. Pharmacol, 25, 256–257.

    CAS  PubMed  Google Scholar 

  3. Gibaldi M., Perrier D. (1975): Pharmacokinetics. New York, Marcel Dekker.

    Google Scholar 

  4. Vaughan D.P. (1975): Estimation of biological availability after drug administration when the drug is eliminated by urinary excretion and metabolism. J. Pharm. Pharmacol., 27, 458–461.

    CAS  PubMed  Google Scholar 

  5. McLean A.J., McNamara P.J., du Souich P., Gibaldi M., Lalka D. (1978): Food, splanchnic blood flow, and bioavailability of drugs subject to first-pass metabolism. Clin. Pharmacol. Ther., 24, 5–10.

    CAS  PubMed  Google Scholar 

  6. Popović J. (1985): Estimation of the first-pass metabolism of a drug during multiple oral dosage. Period. Biol., 87, 290–292.

    Google Scholar 

  7. Popović J. (1985): Influence of first-pass effect on availability of drugs with simultaneous biotransformation in the liver and first-order elimination through kidneys. Iugoslav. Physiol. Pharmacol. Acta, 21 (Suppl. 3), 289–290.

    Google Scholar 

  8. Popović J. (1986): Dosage regimen calculations for drugs with first-order absorption, non-linear first-pass metabolism and parallel non-linear and first-order elimination. Period. Biol., 88, 183–184.

    Google Scholar 

  9. Popović J. (1987): Relationship between the steady-state serum level and the dose of drugs with first-pass and parallel Michaelis-Menten and first-order elimination. Acta Pharm. Jugosl., 37, 313–317.

    Google Scholar 

  10. Popović J., Mikov M., Jakovljević V. (1992): Pharmacokinetics of ticlopidine derived from a new tablet formulation. Acta Biol. Med. Exp., 17, 49–52.

    Google Scholar 

  11. Popović J., Mikov M., Jakovljević V. (1993): Pharmacokinetics and systemic availability of a new metoprolol retard formulation. Eur. J. Drug Metab. Pharmacokinet., Special Issue.

  12. Popović J., Mikov M., Jakovljević V. (1994): Pharmacokinetic analysis of a new acenocoumarol tablet formulation during a bioequivalence study. Eur. J. Drug Metab. Pharmacokinet., 19, 85–89.

    Article  PubMed  Google Scholar 

  13. Popović J.. Mikov M., Jakovljević V. (1995): Pharmacokinetics of carbamazepine derived from a new tablet formulation, Eur. J. Drug Metab. Pharmacokinet., 20, 297–300.

    Article  PubMed  Google Scholar 

  14. Popović J. (2004): Classical Michaelis-Menten and system theory approach to modeling metabolite formation kinetics. Eur. J. Drug Metab. Pharmacokinet., 29, 205–214.

    Article  PubMed  Google Scholar 

  15. Schomerus M., Spiegelhalder B., Stieren B., Eichelbaum M. (1976): Physiological disposition of verapamil in man. Cardiovasc. Res., 10, 605–612.

    Article  CAS  PubMed  Google Scholar 

  16. Singh B.N., Ellrodt G., Peter T.C. (1987): Verapamil: A review of its pharmacological properties and therapeutic use. Drugs, 15, 169–197.

    Article  Google Scholar 

  17. Freedman S.B., Richmond D.R., Ashley J.J., Kelly D.T. (1981): Verapamil kinetics in normal subjects and patients with coronary artery spasm. Clin. Pharmacol. Ther., 30, 644–652.

    CAS  PubMed  Google Scholar 

  18. Somogyi A., Albrecht M., Kleims G., Schafer K., Eichelbaum M. (1981): Pharmacokinetics, bioavailability and ECG response of verapamil in patients with liver cirrhosis. Br. J. Clin. Pharmacol., 12, 51–60.

    CAS  PubMed  Google Scholar 

  19. Johnston A., Burgess CD., Hamer J. (1981): Systemic availability of oral verapamil and effect on PR interval in man. Br. J. Clin. Pharmacol., 12, 397–400.

    CAS  PubMed  Google Scholar 

  20. Eichelbaum M., Somogyi A., von Unruh G.E., Dengler H.J. (1981): Simultaneous determination of the intravenous and oral pharmacokinetic parameters of D, L-verapamil using stable isotope-labelled verapamil. Eur. J. Clin. Pharmacol., 19, 133–137.

    Article  CAS  PubMed  Google Scholar 

  21. Kates R.E., Keefe D.L., Schwartz J., Harapat S., Kirsten E.B., Harrison D.C. (1981): Verapamil disposition kinetics in chronic atrial fibrillation. Clin. Pharmacol. Ther., 30, 44–51.

    CAS  PubMed  Google Scholar 

  22. Woodcock B.G., Rietbrock I., Vohringer H.F., Rietbrock N. (1981): Verapamil disposition in liver disease and intensivecare patients: kinetics, clearance, and apparent blood flow relationships. Clin. Pharmacol. Ther., 29, 27–34.

    CAS  PubMed  Google Scholar 

  23. McAllister R.G., Kirsten E.B. (1982): The pharmacology of verapamil: IV-kinetic and dynamic effects after single intrave-nous and oral doses. Clin. Pharmacol. Ther., 31, 418–426.

    CAS  PubMed  Google Scholar 

  24. Kates R.E. (1983): Calcium antagonists. Pharmacokinetic properties. Drugs, 25, 113–124.

    Article  CAS  PubMed  Google Scholar 

  25. Hamann SR., Blouin R.A., McAllister R.G. (1984): Clinical pharmacokinetics of verapamil. Clin. Pharmacokinet., 9, 26–41.

    Article  CAS  PubMed  Google Scholar 

  26. Vicek J., Macek K., Hulek P., Bratova M., Fendrich Z. (1995): Pharmacokinetic parameters of verapamil and its active metabolite norverapamil in patients with hepatopathy. Arzneimforsch., 45, 146–149.

    Google Scholar 

  27. Krecic-Shepard M.E., Bamas CR., Slimko J., Jones M.P., Schwartz J.B. (2000): Gender-specific effects on verapamil pharmacokinetics and pharmacodynamics in humans. J. Clin. Pharmacol., 40, 219–230.

    Article  CAS  PubMed  Google Scholar 

  28. Vogelgesang B., Echizen H., Schmidt E., Eichelbaum M. (2004): Stereoselective first-pass metabolism of highly cleared drugs: studies of the bioavailability of L- and D-verapamil examined with a stable isotope technique. 1984. Br. J. Clin. Pharmacol., 58, pp. S796–803; discussion S804–6.

    Article  Google Scholar 

  29. Sica D.A. (2005): Calcium channel blocker class heterogeneity: select aspects of pharmacokunetics and pharmacodynamics. J. Clin. Hypertens., 7, 21–26.

    Article  CAS  Google Scholar 

  30. Kovarik J.M. (2005): Pharmacokinetic interaction between verapamil and everolimus in healthy subjects. Br. J. Clin. Pharmacol., 434–437.

  31. Harapat S.R., Kates R.E. (1979): Rapid high-pressure liquid chromatographic analysis of verapamil in blood and plasma. J. Chromatogr., 170, 385–390.

    Article  CAS  PubMed  Google Scholar 

  32. Yeh C.K., Kwan C.K. (1978): A comparison of numerical integrating algorithms by trapezoidal, Lagrange and spline approximation. J. Pharmacokinet. Biopharm., 6, 79–98.

    Article  CAS  PubMed  Google Scholar 

  33. Popović J., Popović V. (1985): Cubic spline functions in pharmacokinetic data analysis. Period. Biol., 87, 293–296.

    Google Scholar 

  34. Popović J., Popović V. (1993): Analysis of toxicokinetic data by means of spline functions. Arch. Toxicol. Kinet. Xenobiot. Metab., 1, 79–93.

    Google Scholar 

  35. Popović J. (1997): Polynomials vs cubic spline functions for model independent deconvolution calculations of absorption rate. Eur. J. Clin. Pharmacol., 52 (Suppl.), 446.

    Google Scholar 

  36. Popović J. (1998): Cubic spline function and polynomials for deconvolution calculations of absorption rate — numerical evaluation. Arch. Toxicol. Kinet. Xenobiot. Metab., 6, 99–107.

    Google Scholar 

  37. Popović J. (1998): Cubic spline functions and polynomials for calculation of absorption rate. Eur. J. Drug Metab. Pharmacokinet., 23, 469–473.

    Article  PubMed  Google Scholar 

  38. Bauer L.A., Horn J.R., Scot Maxon M., Easterling T.R., Shen D.D., Strandness D.E. (2000): Effect of metoprolol and verapamil administered separately and concurrently after single doses on liver blood flow and drug disposition. J. Clin. Pharmacol., 40, 533–543.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popović, J. Validation of the hepatic blood flow rate model for verapamil first-pass metabolism. Eur. J. Drug Metabol. Pharmacokinet. 32, 13–19 (2007). https://doi.org/10.1007/BF03190985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190985

Keywords

Navigation