Skip to main content
Log in

Pharmacokinetics of a novelN-methyl-D-aspartate receptor antagonist (SM-18400): Identification of anN-acetylated metabolite and pre-clinical assessment ofN-acetylation polymorphism

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

(S)-9-chloro-5-[p-aminomethyl-o-(carboxymethoxy)phenylcarbamoylmethyl]-6,7-dihydro-1H,5H-pyrido[1,2,3-de]quinoxaline-2,3-dion hydrochloride trihydrate (SM-18400) was given intravenously to rats and dogs and its pharmacokinetics was investigated. By LC/MS/MS analysis, the major metabolite in the rat serum was identified asN-acetylated SM-18400 (SM-NAc). In rats,AUC ratio of SM-NAc to SM-18400 was approximately 50%. However, 71% of the dose was excreted as unchanged SM-18400 and only 9.8% as SM-NAc in the urine and bile, indicating that the contribution ofN-acetylation clearance (CLNAc) to the total clearance (CLtot) is limited to 10–30% in rats. No SM-NAc or other metabolites were detected in the dog serum, urine or bile. Thein vitro intrinsic clearance (CLint, ml/min/mg cytosolic protein) ofN-acetyltransferase (NAT) activities of dog liver cytosol towards SM-18400 and hepaticN-acetylation clearance (CLNAc, ml/min/kg body weight) estimated by well-stirred model were both only 5% of the respective rat value, well reflecting the relativein vivo CLNAc/CLtot ratios.CLint values for human live cytosol samples (n=4) and estimatedCLNAc were all less than 18% and 7% of the rat, respectively. Based on these results, we concluded that theCLNAc/CLtot of human would be small enough to avoid major inter-individual variance in SM-18400 pharmacokinetics due toN-acetylation polymorphism. In addition, even a human liver cytosol sample lacking polymorphic NAT2 activity as determined by sulfamethazine (SMZ)N-acetylation analysis, proved capable of acetylating SM-18400, suggesting that NAT2 is not the major enzyme responsible forN-acetylation of SM-18400 in human. This fact would also reduce the risk ofN-acetylation polymorphism playing a role in clinical use of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SM-18400:

(S)-9-chloro-5-[p-aminomethyl-o-(carboxymethoxy)phenylcarbanoylmethyl]-6,7-dihydro-1H,5H-pyrido[1,2,3-de]quinoxaline-2,3-dion hydrochloride trihydrate

NMDA:

N-methyl-D-aspartate

CL NAc :

N-acetylation clearance

SM-NAc:

N-acetylated SM-18400

P ABA:

p-aminobenzoic acid

SMZ:

sulfamethazine

DTT:

dithiothreitol

AcCoA:

acetyl coenzyme A

[14C]SM-18400:

[quinoxaline-2,3-14C]SM-18400

References

  1. Maruoka Y., Ohno Y., Tanaka H., Yasuda H., Otani K., Tamamura C., Nakamura M. (1998): Effects of the novel tricyclic quinoxalinedione derivatives, SM-18400, and its analogs, on N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission in the isolated neonatal rat spinal cord in vitro. Jpn. J. Pharmacol. 76: 265–270.

    Article  CAS  PubMed  Google Scholar 

  2. Ohtani K., Tanaka H., Yasuda H., Maruoka Y., Kawabe A. and Nakamura M. (2000): Blocking the glycine-binidng site of NMDA receptors prevents the progression of ischemic pathology induced by bilateral carotid artery occlusion in spontaneous hypersentitive rats. Brain Res. 871: 311–318.

    Article  CAS  PubMed  Google Scholar 

  3. Evans DAP (1989): N-acetyltransferases. Pharmacol. Ther. 42: 157–234.

    Article  CAS  PubMed  Google Scholar 

  4. Devadatta S., Gangadharam PR., Andrews RH., Fox W. and Ramakrishnan CV. (1960): Peripheral neuritis due to isoniazid. Bull. W. H. O. 23: 587–598.

    CAS  PubMed  Google Scholar 

  5. Perry HM Jr, Tan EM., Carmody S. and Sakamoto A. (1970): Relationship of acetyltransferase activity to antinuclear antibodies and toxic symptoms in hypertensive patients treated with hydralazine. J. Lab. Clin. Med. 76: 114–125.

    PubMed  Google Scholar 

  6. Strandberg I., Boman G., Hassler L. and Sjöqvist F. (1976): Acetylator phenotype in patients with hydralazine-induced lupoid syndrome. Acta Med. Scand. 200: 367–371.

    CAS  PubMed  Google Scholar 

  7. Woosley RL., Drayer DE., Reidenberg MM., Nies AS., Carr K. and Oates JA. (1978): Effect of acetylator phenotype on the rate at which procainamide induces antinuclear antibodies and the lupus syndrome. N. Engl. J. Med. 298: 1157–1160.

    Article  CAS  PubMed  Google Scholar 

  8. Grant DM., Blum M. and Meyer UA. (1992): Polymorphism of N-acetyltransferase genes. Xenobiotica 22: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  9. Grant DM. (1993): Molecular genetics of the N-acetyltransferases. Pharmacogenetics 3: 45–50.

    Article  CAS  PubMed  Google Scholar 

  10. Vatsis KP and Weber WW. (1993): Structural heterogeneity of Caucasian N-acetyltransferase at the NAT1 gene locus. Arch. Biochem. Biophys. 301: 71–76.

    Article  CAS  PubMed  Google Scholar 

  11. Vatsis KP., Weber WW., Bell DA., Dupret JM., Price Evans DA., Grant DM., Hein DW., Lin HJ., Meyer UA., Relling MV., Sim E., Suzuki T. and Yamazoe Y. (1995). Nomenclature for N-acetyltransferases. Pharmacogenetics 5: 1–17.

    Article  CAS  PubMed  Google Scholar 

  12. Grant DM., Hughes NC., Janezic SA., Goodfellow GH., Chen HJ., Gaedigk A., Yu VL. and Grewal R. (1997) Human acetyltransferase polymorphisms. Mutat. Res. 376: 61–70.

    CAS  PubMed  Google Scholar 

  13. Zhao B., Lee EJD, Yeoh PN. and Gong NH. (1998): Detection of mutations and polymorphism of N-acetyltransferase 1 gene in Indian, Malay and Chinese populations. Pharmacogenetics 8: 299–304.

    Article  CAS  PubMed  Google Scholar 

  14. Butcher NJ., Ilett KF. and Minchin RF. (1998): Functional polymorphism of the human arylamine N-acetyltransferase type 1 gene caused by C190T and G560A mutations. Pharmacogenetics 8: 67–72.

    Article  CAS  PubMed  Google Scholar 

  15. Weber WW. and King CM. (1981): N-acetyltransferase and arylhydroxamic acid acyltransferase. Methods Enzymol. 77: 272–280.

    Article  CAS  PubMed  Google Scholar 

  16. Sawada Y. (1985): Physiological pharmacokinetics; animal scale-up. In: Hanano M., Umemura K. and Iga T. (eds). Applied Pharmacokinetics —Theory and Experiments. Tokyo: Soft Science, Inc., 474–514.

    Google Scholar 

  17. Bradford MM. (1976): A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  18. Lower GM. Jr and Bryan GT. (1973): Enzymatic N-acetylation of carcinogenic aromatic amines by liver cytosol of species displaying different organ susceptibilities. Biochem. Pharmacol. 22: 1581–1588.

    Article  CAS  PubMed  Google Scholar 

  19. Saito K., Kaneko H., Sato K., Nakatsuka I. and Yamada H. (1996): Production of acetylated metabolites of pesticides in mammals: characterization of acetylation of anline derivatives in vitro. J. Pesticide Sci. 21: 333–336.

    CAS  Google Scholar 

  20. Weber WW., Cohen SN. and Steinberg MS. (1968): Purification and properties of N-acetyltransferase from mammalian liver. Ann. N.Y. Acad. Sci. 151: 734–741.

    CAS  PubMed  Google Scholar 

  21. Berglund F., Engberg A., Persson E. and Ulfendahl H. (1969): Renal clearances of labelled inulin (inulin-carboxyl-14C, inulin-methoxy-3H) and a polyethylene glycol (PEG1000) in the rat. Acta Physiol. Scand. 76: 458–462.

    Article  CAS  PubMed  Google Scholar 

  22. Fried TA., Osgood RW. and Stein JH. (1988): Tubular site(s) of action of atrial natriuretic peptide in the rat. Am. J. Physiol. 255: F313-F316.

    CAS  PubMed  Google Scholar 

  23. Sawaya BP., Weihprecht H., Campbell WR., Lorenz JN., Webb RC., Briggs JP. and Schnermann J. (1991): Direct vasocontriction as a possible cause for amphotericin B-induced nephrotoxicity in rats. J. Clin. Invest. 87: 2097–2107.

    Article  CAS  PubMed  Google Scholar 

  24. Vanholder R., Leusen I. and Lameire N. (1984): Comparison between mannitol and saline infusion in HgCl2-induced acute renal failure. Nephron 38: 193–201.

    Article  CAS  PubMed  Google Scholar 

  25. Newell SM., Ko JC., Ginn PE., Heaton-Jones TG., Hyatt DA., Cardwell AL., Mauragis DF. and Harrison JM. (1997): Effects of three sedative protocols on glomerular filtration rate in clinically normal dogs. Am J Vet Res 58: 446–450.

    CAS  PubMed  Google Scholar 

  26. Inui K., Masuda S. and Saito H. (2000): Cellular and molecular aspects of drug transport in the kidney. Kidney Int. 58: 944–958.

    Article  CAS  PubMed  Google Scholar 

  27. Kullak-Ublick GA., Beuers U. and Paumgartner G. (2000): Hepatobiliary transport. J. Hepatol. 32 (Suppl.): 3–18.

    Article  CAS  PubMed  Google Scholar 

  28. Ohsako S. and Deguchi T. (1990): Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases from human liver. J. Biol. Chem. 265: 4630–4634.

    CAS  PubMed  Google Scholar 

  29. Glowinski IB., Radtke HE. and Weber WW. (1978): Genetic variation in the N-acetylation of carcinogenic arylamines by human and rabbit liver. Mol. Pharmacol. 14: 940–949.

    CAS  PubMed  Google Scholar 

  30. Hein DW., Hirata M. and Weber WW. (1981): An enzyme marker to ensure reliable determination of human isoniazid acetylator phenotype in vitro. Pharmacology 23: 203–210.

    Article  CAS  PubMed  Google Scholar 

  31. Gunawardhana L., Barr J., Weir AJ., Brendel K. and Sipes IG. (1991): The acetylation of sulfamethazine and p-aminobenzoic acid by human liver slices in dynamic orga culture. Drug Metab. Dispos. 19: 648–654.

    CAS  PubMed  Google Scholar 

  32. Land SJ., Zukowski K., Lee M-S., Debiec-Rychter M., King CM. and Wang CY. (1989): Metabolism of aromatic amines: relationships of N-acetylation, O-acetylation, N,O-acetyltransfer and deacetylation in human liver and urinary bladder. Carcinogenesis 10: 727–731.

    Article  CAS  PubMed  Google Scholar 

  33. Kadlubar FF. (1994): Biochemical individuality and its implications for drug and carcinogen metabolism: recent insights from acetyltransferase and cytochrome P4501A2 phenotyping and genotyping in humans. Drug Metab. Rev. 26: 37–46.

    Article  CAS  PubMed  Google Scholar 

  34. Daly AK. (1999): Pharmacogenetics. In: Woolf TF (ed). Handbook of Drug Metabolism. New York: Marcel Dekker, Inc., 175–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabuki, M., Kon-Ya, Y., Kataoka, M. et al. Pharmacokinetics of a novelN-methyl-D-aspartate receptor antagonist (SM-18400): Identification of anN-acetylated metabolite and pre-clinical assessment ofN-acetylation polymorphism. Eur. J. Drug Metab. Pharmacokinet. 28, 21–29 (2003). https://doi.org/10.1007/BF03190863

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190863

Keywords

Navigation