Skip to main content
Log in

Alterations in cefalosporin levels in the serum and mandible of hyperlipaedemic rats after co-administration of ibuprofen

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Several interactions between antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) have been described in the literature, and it has been reported that hyperlipidaemia induces significant changes in cefalosporin levels. The aim of this study was to determine the changes in the levels of several cefalosporins in the serum and mandible after ibuprofen co-administration in hyperlipaedemic rats. One hundred and forty male Wistar rats were used and divided in 4 groups (A−D), each of which was further divided into 5 subgroups (1–5), either with placebo or with various treatment regimes. The co-administration of NSAIDs led to increased cefalosporin levels in both control and hyperlipidaemic animals. Hyperlipidaemia was also found to augment cefalosporin levels. These observed increases might be due to the displacement of the cephalosporins from their binding sites in serum albumin and tissue proteins in the presence of ibuprofen. NSAIDs showed a greater binding affinity for tissue proteins compared to the cephalosporins, and probably play an antagonistic role in protein binding, resulting in higher concentrations of anbtibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahman MH, Yamasaki K, Shin YH, Lin CC, Otagiri M. Characterization of high affinity binding sites of non-steroidal antiinflammatory drugs with respect to site-specific probes on human serum albumin. Biol Pharm Bull 1993; 16(11):1169–74.

    CAS  PubMed  Google Scholar 

  2. Rahim S, Aubry AF. Location of binding sites on immobilized human serum albumin for some nonsteroidal anti-inflammatory drugs. J Pharm Sci 1995; 84(8):949–52.

    Article  CAS  PubMed  Google Scholar 

  3. Padoin C, Tod M, Perret G, Petitjean O. Analysis of the pharmacokinetic interaction between cephalexin and quinapril by a nonlinear mixed-effect model. Antimicrob Agents Chemother 1998; 42(6):1463–9.

    CAS  PubMed  Google Scholar 

  4. Nerli B, Pico G. Evidence of human serum albumin beta-lactamase activity. Biochem Mol Biol Int 1994; 32(4):789–95.

    CAS  PubMed  Google Scholar 

  5. Tawara S, Matsumoto S, Matsumoto Y, Kamimura T, Goto S. Structure-binding relationship and binding sites of cephalosporins in human serum albumin. J Antibiot (Tokyo) 1992; 45(8):1346–57.

    CAS  Google Scholar 

  6. Nerli B, Romanini D, Pico G. Structural specificity requirements in the binding of beta-lactam antibiotics to human serum albumin. Chem Biol Interact 1997; 104(2–3):179–202.

    Article  CAS  PubMed  Google Scholar 

  7. Tesserommatis C, Tsopanakis C, Symeonoglou G, Loukissa M, Kouvarou E, Varonos DD. How harmless is FFA enhancement? Eur J Drug Metab Pharmacokinet 1996; 21(3):213–5.

    Article  CAS  PubMed  Google Scholar 

  8. Lee ZS, Critchley JA, Tomlinson B, Young RP, Thomas GN, Cockram CS, et al. Urinary epinephrine and norepinephrine interrelations with obesity, insulin, and the metabolic syndrome in Hong Kong Chinese. Metabolism; 50(2):135–43.

  9. Janssen WM, Hillege H, Pinto-Sietsma SJ, Bäk AA, De Zeeuw D, de Jong PE. Low levels of urinary albumin excretion are associated with cardiovascular risk factors in the general population. Clin Chem Lab Med 2000; 38(11): 1107–10.

    Article  CAS  PubMed  Google Scholar 

  10. Troconiz JI, Lopez-Bustamante LG, Fos D. Effect of induced hypoalbuminemia on distribution, total clearance and unbound clearance of piroxicam in vivo in the rat. Eur J Drug Metab Pharmacokinet 1993; 18(2):165–71.

    CAS  PubMed  Google Scholar 

  11. Nakura H, Tateishi T, Watanabe M, Asoh M, Tanaka M, Kumai T, et al. Effect of hypoalbuminemia on the disposition of theophylline. Comparative study with Sprague-Dawley rats and a mutant Sprague-Dawley hyperlipidemic strain with hypoalbuminemia. Drug Metab Dispos 1998; 26(6):595–7.

    CAS  PubMed  Google Scholar 

  12. Wojcicki J, Gornik W, Pawlik A, Drozdzik M, Gawronska-Szklarz B. Comparative pharmacokinetics of theophylline in rabbits and in humans with hyperlipidemia. Pulmon Pharmacol 1996; 9(3):175–8.

    Article  CAS  Google Scholar 

  13. Keane WF. The role oflipids in renal disease: future challenges. Kidney Int 2000; 57(suppl 75):S27–31.

    Article  Google Scholar 

  14. Wojcicki J, Kalinowski W, Gawronska-Szklarz B. Comparative pharmacokinetics of doxycycline and oxytetracycline in patients with hyperlipidemia. Arzneimittelforschung 1985; 35(6):991–3.

    CAS  PubMed  Google Scholar 

  15. Thomas WA, Hartford WS, O’Neal RM. Modifications of diets responsible for induction of coronary thromboses and myocardial infarcts in rats. J Nutr 1959; 69:325–31.

    CAS  PubMed  Google Scholar 

  16. Bennet VJ, Brondie LJ, Benner JE, Kirby MW. Simplified accurate method to antibiotic assay of clinical speciment. Appl Microbiol 1966; 14:170–7.

    Google Scholar 

  17. Trachilis A, Saranteas T, Potamianou A, Mourouzis C, Tesseromatis C. Quinolone levels in serum and maxillofacial tissues under ibuprofen coadministration following surgical trauma. J Musculoskelet Neuronal Interact 2003; 3(2):170–5.

    CAS  PubMed  Google Scholar 

  18. He YL, Tanigawara Y, Kamiya A, Hon R. Moment analysis of drug disposition in kidney. VI. Assessment of in vivo transmembrane transport of p-aminohippurate in tubular epithelium. J Pharmacokinet Biopharm 1991; 19(6):667–90.

    Article  CAS  PubMed  Google Scholar 

  19. Arvidsson A, Borga O, Alvan G. Renal excretion of cephapirin and cephaloridine: evidence for saturable tubular reabsorption. Clin Pharmacol Ther 1979; 25(6):870–6.

    CAS  PubMed  Google Scholar 

  20. Svendsen KB, Bech JN, Sorensen TB, Pedersen EB. A comparison of the effects of etodolac and ibuprofen on renal haemodynamics, tubular function, renin, vasopressin and urinary excretion of albumin and alpha-glutathione-S-transferase in healthy subjects: a placebocontrolled cross-over study. Eur J Clin Pharmacol 2000; 56(5):383–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hori R, Okumura K, Kamiya A, Nihira H, Nakano H. Ampicillin and cephalexin in renal insufficiency. Clin Pharmacol Ther 1983; 34(6):792–8.

    CAS  PubMed  Google Scholar 

  22. Fong HJ, Cohen AH. Ibuprofen-induced acute renal failure with acute tubular necrosis. Am J Nephrol 1982; 2(1):28–31.

    Article  CAS  PubMed  Google Scholar 

  23. Trichilis A, Tesserommatis C, Varonos D. Changes in serum levels of quinolones in rats under the influence of experimental trauma. Eur J Drug Metab Pharmacokinet 2000; 25(2):73–8.

    Article  CAS  PubMed  Google Scholar 

  24. Jungbluth GL, Pasko MT, Jusko WJ. Factors affecting ceftriaxone plasma protein binding during open heart surgery. J Pharm Sci 1989; 78(10):807–11.

    Article  CAS  PubMed  Google Scholar 

  25. Terasaki T, Imaeda N, Nishide K, Tsuji A. Age-related change of cefazolin binding to rat serum proteins and its relation to the molar ratio of free fatty acid to serum albumin. J Pharmacobiodyn 1986; 9(l):81–7.

    CAS  PubMed  Google Scholar 

  26. Kuroyama M, Motohashi S, Murase S, Kobayashi T, Tomonaga F, Abe T, et al. (In Japanese: Protein binding of cephems in the elderly). Nippon Ronen Igakkai Zasshi 1992; 29(11):874–80.

    CAS  PubMed  Google Scholar 

  27. Kuroyama M, Kumano K, Tomonaga F, Sakai T, Mashimo S. (In Japanese: Protein binding of various cephems in healthy subjects and patients with chronic renal failure). Nippon Jinzo Gakkai Shi 1991; 33(8):769–77.

    CAS  PubMed  Google Scholar 

  28. Decroix MO, Zini R, Chaumeil JC, Tillement JP. Cefazolin serum protein binding and its inhibition by bilirubin, fatty acids and other drugs. Biochem Pharmacol 1988; 37(14):2807–14.

    Article  CAS  PubMed  Google Scholar 

  29. McNamara PJ, Trueb V, Stoeckel K Ceftriaxone binding to human serum albumin. Indirect displacement by probenecid and diazepam Biochem Pharmacol 1990;40(6):1247.

    Article  CAS  PubMed  Google Scholar 

  30. Tesseromati C, Triandafilidi E, Tsivou E. (In Greek: Serum and mandible alterations of antibiotics levels under increased serum FFA). Hell Stomatol Chron 1988; 32(2):103–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsivou, E., Melakopoulos, I., Kotsiou, A. et al. Alterations in cefalosporin levels in the serum and mandible of hyperlipaedemic rats after co-administration of ibuprofen. European Journal of Drug Metabolism and Pharmacokinetics 30, 171–174 (2005). https://doi.org/10.1007/BF03190616

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190616

Keywords

Navigation