Skip to main content
Log in

Metabolism of 2-phenylethylamine and phenylacetaldehyde by precision-cut guinea pig fresh liver slices

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

2-Phenylethylamine is an endogenous constituent of human brain and is implicated in cerebral transmission. It is also found in certain foodstuffs and may cause toxic side-effects in susceptible individuals. Metabolism of 2-phenylethylamine to phenylacetaldehyde is catalyzed by monoamine oxidase and the oxidation of the reactive aldehyde to its acid derivative is catalyzed mainly by aldehyde dehydrogenase and perhaps aldehyde oxidase, with xanthine oxidase having minimal transformation. The present investigation examines the metabolism of 2-phenylethylamine to phenylacetaldehyde in liver slices and compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activity in the oxidation of phenylacetaldehyde with precision-cut fresh liver slices in the presence/absence of specific inhibitors of each enzyme. In liver slices, phenylacetaldehyde was rapidly converted to phenylacetic acid. Phenylacetic acid was the main metabolite of 2-phenylethylamine, via the intermediate phenylacetaldehyde. Phenylacetic acid formation was completely inhibited by disulfiram (specific inhibitor of aldehyde dehydrogenase), whereas isovanillin (specific inhibitor of aldehyde oxidase) inhibited acid formation to a lesser extent and allopurinol (specific inhibitor of xanthine oxidase) had little or no effect. Therefore, in liver slices, phenylacetaldehyde is rapidly oxidized by aldehyde dehydrogenase and aldehyde oxidase with little or no contribution from xanthine oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakajima T., Kakimoto Y., Sano I. (1964): Formation of beta- phenylethylamine in mammalian tissue and its effect on motor activity in the mouse. J. Pharmacol. Exp. Ther., 143, 319–325.

    CAS  PubMed  Google Scholar 

  2. Durden D.A., Philips S.R. (1980): Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J. Neurochem., 34, 1725–1732.

    Article  CAS  PubMed  Google Scholar 

  3. Henry D.P., Russell W.L., Clemens J.A., Plebus L.A. (1988): Phenylethylamine and p-tyramine in the extracellular space of the rat brain: quantification using a new radioenzymatic assay and in situ microdialysis. In: Boulton A.A., Juorio A.V., Downer R.G.H. (eds). Trace amines: comparative and clinical neurobiology. Humana Press, Clifton, NJ, 239–250.

    Google Scholar 

  4. Paterson I.A., Jurio A.V., Boulton A.A. (1990): 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system. J. Neurochem., 55, 1827–1837.

    Article  CAS  PubMed  Google Scholar 

  5. Wyatt R.J., Gillin J.C., Stoff D.M., Moja E.A., Tinklenberg J.R. (1977): In: Usdin E., Barchas J., Hamburg D. (eds). Neuroregulators and psychiatric disorders. Oxford University Press. New York, 31.

    Google Scholar 

  6. Boulton A.A., Juorio A.V., Paterson I.A. (1990): Phenylethylamine in CNS: effects of monoamine oxidase inhibiting drugs, deuterium substitution and lesions and its role in the neuromodulation of catecholaminergic neurotransmission. J. Neural Transm. Suppl., 29, 119–129.

    CAS  PubMed  Google Scholar 

  7. Dyck, L.E., Yang C.R., Boulton A.A. (1983): The biosynthesis of p-tyramine, m-tyramine, and β-phenylethylamine by rat striatal slices. J. Neurochem. Res., 10, 211–220.

    CAS  Google Scholar 

  8. Barroso N., Rodriguez M. (1996): Action β-phenylethylamine and related amines on nigrostriatal dopamine neurotransmission. Eur. J. Pharmacol., 297, 195–203.

    Article  CAS  PubMed  Google Scholar 

  9. Fischer E. (1975): The phenethylamine hypothesis of thymic homeostasis. Biol. Psychiatry, 10, 667–673.

    CAS  PubMed  Google Scholar 

  10. Sabelli H.C., Borison R.L., Diamond B.I., Havdala H.S., Narasimhachari N. (1977): Phenylthylamine and brain function. Biochem. Pharmacol., 27, 1707–1711.

    Article  Google Scholar 

  11. Sandler M., Youdim M.B., Hanington E. (1974): A phenylethylamine oxidizing defect in migraine. Nature, 250, 335–337.

    Article  CAS  PubMed  Google Scholar 

  12. Millichap J.G., Yee M.M. (2003): The diet factor in pediatric and adolescent migraine. Pediatr. Neurol., 28, 9–15.

    Article  PubMed  Google Scholar 

  13. Martin V.T., Behbehani M.M. (2001) Headache: Toward a rational understanding of migraine trigger factors. Med. Clin. N. Am., 85, 1–20.

    Article  Google Scholar 

  14. Quian M., Reineccius G. (2002) Identification of aroma compounds in Parmigiamo-Reggiano cheese by gas chromatography/olfactometry. J. Dairy Sci., 85, 1362–1369.

    Article  Google Scholar 

  15. Hyotylainen T., Savola N., Lehtonen P., Riekkola M.L. (2001): Determination of biogenic amines in wine by multidimensional liquid chromatography with online derivatisation. Analyst, 126, 2124–2127.

    Article  CAS  PubMed  Google Scholar 

  16. Aznar M., Lopez R., Cacho J., Ferreira V. (2003) Prediction of aged red wine aroma properties from aroma chemical composition: Partial least squares regression models. J. Agric. Food Chem., 51, 2700–2707.

    Article  CAS  PubMed  Google Scholar 

  17. Salach J.I. (1979): Monoamine oxidase from beef liver mitochondria: simplified isolation procedure, properties, and determination of its cysteinyl flavin content. Arch. Biochem. Biophys., 192, 128–137.

    Article  CAS  PubMed  Google Scholar 

  18. Houslay M.D., Tipton K.F. (1974): A kinetic evaluation of monoamine oxidase activity in the rat liver mitochondrial outer membranes. Biochem. J., 139, 645–652.

    CAS  PubMed  Google Scholar 

  19. Wouters J. (1998): Structural aspects of monoamine oxidase and its reversible inhibition., Curr. Med. Chem., 5, 137–162.

    CAS  PubMed  Google Scholar 

  20. Feldman R.I., Weiner H. (1972): Horse liver aldehyde dehydrogenase. I. Purification and characterization. J. Biol. Biochem., 247, 260–266.

    CAS  Google Scholar 

  21. Panoutsopoulos G.I. (1994): In: Hepatic Oxidation of Aromatic Aldehydes, PhD Thesis, University of Bradford, Bradford, UK.

    Google Scholar 

  22. Smith P.F., Krack G., McKee R.L., Johnson D.G., Gandolfi A.J., Hruby, V.J., Krumdieck C.L., Brendel K. (1986): Maintenance of adult rat liver slices in dynamic organ culture. In Vitro Cell. Dev. Biol., 22, 706–712.

    Article  CAS  PubMed  Google Scholar 

  23. Sipes I.G., Fisher R.L., Smith P.F., Stine E.R., Gandolfi A.J., Brendel K. (1987): A dynamic liver culture system: a tool for studying chemical biotransformation and toxicity. Arch. Toxicol. Suppl., 11, 20–33.

    CAS  PubMed  Google Scholar 

  24. Youdim M.B., Finberg J.P.M. (1991): New directions in monoamine oxidase A and B selective inhibitors and substrates. Biochem. Pharmacol., 41, 155–162.

    Article  CAS  PubMed  Google Scholar 

  25. Goridis C, Neff N.H. (1971): Monoamine oxidase in sympathetic nerves: a transmitter specific enzyme type. Br. J. Parmacol., 43, 814–818.

    CAS  Google Scholar 

  26. Egashira T., Ekstedt B., Oreland L. (1976): Inhibition by clorgyline and deprenyl of the different forms of monoamine oxidase in rat liver mitochondria. Biochem. Pharmacol., 25, 2583–2586.

    Article  CAS  PubMed  Google Scholar 

  27. Neff N.H., Yang H.Y.T. (1974): Another look at the monoamine oxidases and the monoamine oxidase inhibitor drugs. Life Sci., 14, 2061–2074.

    Article  CAS  PubMed  Google Scholar 

  28. Fuller R.W., Warren B.J., Molloy B.B. (1970): Selective inhibition of monoamine oxidase in rat brain mitochondria. Biochem. Pharmacol., 19, 2934–2936.

    Article  CAS  PubMed  Google Scholar 

  29. Shaw S., Jayatilleke E. (1992): The role of cellular oxidases and catalytic iron in the pathogenesis of ethanol-induced liver injury. Life Sci., 50, 2045–2052.

    Article  CAS  PubMed  Google Scholar 

  30. Pietruszco R. (1989): In Biochemistry and Physiology of substance abuse (Watson R.R., Ed.) Vol. I, pp89–127, CRC Press, Boca Raton, FL.

    Google Scholar 

  31. Klyosov A.A. (1996): Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry, 35, 4457–4467.

    Article  CAS  PubMed  Google Scholar 

  32. Kaminski Z.W., Jezewska M.M. (1982): Involvement of a single thiol group in the conversion of the NAD+-dependent activity of the rat liver oxidoreductase to the O2-dependent activity. Biochem. J., 207, 341–346.

    CAS  PubMed  Google Scholar 

  33. Waud W.R., Rajagopalan K.V. (1976): Purification and properties of the NAD+-dependent (type D) and O2-dependent (type O) forms of the rat liver xanthine dehydrogenase. Arch. Biochem. Biophys., 172, 354–364.

    Article  CAS  PubMed  Google Scholar 

  34. Delia Corte E., Stripe F. (1972): The regulation of rat liver xanthine oxidase: Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem. J., 126, 739–745.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panoutsopoulos, G.I., Kouretas, D., Gounaris, E.G. et al. Metabolism of 2-phenylethylamine and phenylacetaldehyde by precision-cut guinea pig fresh liver slices. European Journal of Drug Metabolism and Pharmacokinetics 29, 111–118 (2004). https://doi.org/10.1007/BF03190585

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190585

Keywords

Navigation