Skip to main content
Log in

Effect of pregnandiol on caffeine metabolism in female rats

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Three groups of six 5-week-old Sprague Dawley female rats received i.p. injections of pregnandiol, 1.25, 2.50 or 5 mg/kg, respectively, in triolein daily for 7 days. Caffeine metabolism was studied in liver slices on day 8 by HPLC. Only primary metabolites were formed. N-1 demethylation was the most important pathway (theobromine represented 51% of total dimethylxanthines). Unlike in human in vitro or in vivo, 1,3,7-DAU (6-amino-5-(N-formylmethylamino)-1,3-dimethyluracil) was an important metabolite (9.7% of total caffeine metabolites). Pregnandiol inhibited N-1, N-3 and N-7 demethylation in vitro (−33%, −33% and −28%, respectively, at 5 mg/kg/day), but it had no effect on N-1 demethylation at 1.25 or 2.50 mg/kg/day. Pregnandiol at all doses had no effect on 1,3,7-trimethyluric acid and 1,3,7-DAU formation. These results are consistent with the hypothesis that C-8 hydroxylation and demethylation of caffeine are mediated by different isoenzymes. They indicate that pregnandiol is a potent inhibitor of microsomal drug metabolism, specifically of cytochrome P450 IA, which could explain the immaturity of some metabolic pathways of caffeine in neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aranda J.V., Cook C.E., Gorman W., et al. (1979): Pharmacokinetic profile of caffeine in premature newborn infant with apnea. J. Pediatr., 94, 663–668.

    Article  CAS  PubMed  Google Scholar 

  2. Gorodischer, R., Karplus M. (1982): Pharmacokinetic aspects of caffeine in premature infants with apnea. Eur. J. Clin. Pharmacol., 22, 47–52.

    Article  CAS  PubMed  Google Scholar 

  3. Carrier O, Pons G., Rey E., et al. (1988): Maturation of caffeine metabolic pathways in infancy. Clin. Pharmacol. Ther., 44, 145–151.

    CAS  PubMed  Google Scholar 

  4. Pons G., Carrier O., Richard M.O., et al. (1988): Developmental changes of caffeine elimination in infancy. Dev. Pharmacol. Ther., 11, 258–264.

    CAS  PubMed  Google Scholar 

  5. Warazawaki D., Ben Zvi Z., Gorodischer R. (1981): Caffeine metabolism in liver alices during postnatal development in the rat. Biochem. Pharmacol., 30, 3145–3150.

    Article  Google Scholar 

  6. Bonati M., Latini R., Marzi E., Cantoni R., Belvedere G. (1980): (2-14C)-caffeine metabolism in control and 3-methylcholanthrene induced rat liver microsomes by high pressure liquid chromatography. Toxicol. Lett., 7, 1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Wietholtz H., Voegelin M., Arnaud M.J., Bircher J., Preisig R. (1981): Assessment of the cytochrome P-448 dependent liver enzyme system by a caffeine breath test. Eur. J. Clin. Pharmacol., 21, 53–59.

    Article  CAS  PubMed  Google Scholar 

  8. Nebert D.W., Adeanik M., Coon M.J., et al. (1987): The P-450 gene superfamily. Recommended nomenclature. DNA, 6, 1–11.

    Article  CAS  PubMed  Google Scholar 

  9. Kardish R., Feuer G. (1972): Relationship between maternal progesterones and the delayed drug metabolism in the neonate. Biol. Neonate, 20, 58–67.

    Article  CAS  PubMed  Google Scholar 

  10. Feuer G., Kardish R. (1975): Hormonal regulation of drug metabolism during pregnancy. Int. J. Clin. Pharmacol., 11, 366–374.

    CAS  Google Scholar 

  11. Soyka L.F., Long R.J. (1972): In vitro inhibition of drug metabolism by metabolites of progesterone. J. Pharmacol. Exp. Ther., 182, 320–327.

    CAS  PubMed  Google Scholar 

  12. Tephly T.R., Mannering G.J. (1968): Inhibition of drug metabolism. V. Inhibition of drug metabolism by steroids. Mol. Pharmacol., 4, 10–14.

    CAS  PubMed  Google Scholar 

  13. Juchau M.R., Fouts J.R. (1966): Effects of norethynodrel and progesterone on hepatic microsomal drug-metabolizing enzyme systems. Biochem. Pharmacol., 15, 891–898.

    Article  CAS  Google Scholar 

  14. Berthou F., Ratanasavanh D., Riche C., Guillouzo A. (1988): Caffeine metabolism by human and rat hepatocytes in primary culture. In: Guillouzo A. (ed) Liver Cells and Drugs. London: Colloque INSERM/John Libbey Eurotext Ltd, pp. 287–292.

    Google Scholar 

  15. Arnaud M.J. (1985): Comparative metabolic disposition of (1-Me14C) caffeine in rats, mice and Chinese hamsters. Drug Metab. Dispos., 13, 471–478.

    CAS  PubMed  Google Scholar 

  16. Kalow W., Campbell M. (1988): Biotransformation of caffeine by microsomes. ISI Atlas of Science, O809–9083, 381–386.

    Google Scholar 

  17. Berthou F., Ratanasavanh D., Riche C., Picart D., Voirin T., Guillouzo A. (1989): Comparison of caffeine metabolism by slices, microsomes and hepatocyte cultures from adult human liver. Xenobiotica, 19, 401–417.

    Article  CAS  PubMed  Google Scholar 

  18. Dean M.E., Stock B.H. (1975): Hepatic microsomal metabolism of drugs during pregnancy in the rat. Drug Metab. Dispos. 3, 325–331.

    CAS  PubMed  Google Scholar 

  19. Grant D.M., Campbell M.E., Tang B.K., Kalow W. (1987): Biotransformation of caffeine by microsomes from human livers: kinetics and inhibition studies. Biochem. Pharmacol., 36, 1251–1260.

    Article  CAS  PubMed  Google Scholar 

  20. Sesardic D., Boobis A.R., Murray B.P., et al. (1990): Furafylline is a potent and selective inhibitor of cytochrome P450 IA2 in man: Br. J. Clin. Pharmacol, 29, 1251–1260.

    Google Scholar 

  21. Soyka L.F., Deckert F.W. (1974): Further studies on the inhibition of drug metabolism by pregnanolone and related steroids. Biochem. Pharmacol., 23, 1629–1639.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bienvenu, T., Pons, G., Rey, E. et al. Effect of pregnandiol on caffeine metabolism in female rats. Eur. J. Drug Metab. Pharmacokinet. 18, 181–185 (1993). https://doi.org/10.1007/BF03188794

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03188794

Keywords

Navigation