Skip to main content
Log in

Metabolic mechanisms of caffeine catalyzed by cytochrome P450 isoenzyme 1A2: a theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Caffeine (CA), a universally used psychoactive substance in foods and drugs, can cause osteoporosis when taken in moderate-to-high doses. The metabolic mechanisms of CA catalyzed by cytochrome P450 isoenzyme 1A2 (CYP1A2) were systematically explored in this study based on DFT calculation. Four possible metabolic pathways were investigated, namely 1-N, 3-N, 7-N demethylations, and C-8 hydroxylation. The results determined the mechanistic details and revealed some notable features. The rate-limiting C α –H hydroxylation for the N-demethylation mechanism proceeded predominantly through a hydrogen atom transfer mechanism with two-state reactivity. The generated carbinolamine decomposed in a non-enzymatic environment, especially through the adjacent heteroatom-assisted proton transfer. The rate-limiting step for C-8 hydroxylation involved the nucleophilic attack of the active Cpd I’s oxygen atom. Intriguingly, CA metabolic performance depended on the multiplicity of Cpd I. The 3-N demethylation metabolic mechanism predominated over the C-8 hydroxylation on the high-spin quartet state. Paraxanthine was the most energetically feasible metabolic product of CA. On the low-spin doublet state, however, C-8 hydroxylation had the lowest activation energy; hence, 1,3,7-trimethyluric acid was the optimum metabolic product of CA. All the results were in agreement with the experimental observation and can supply rational clues for the different metabolic performances of CA catalyzed by CYP1A2 in humans and rats. The calculated results in this study can provide more implications for the controversial amine N-dealkylation mechanisms by CYP and offer essential insights into bio-decaffeination techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ashihara H, Crozier A (2001) Trends Plant Sci 6:407–413

    Article  CAS  Google Scholar 

  2. Fredholm BB, Bättig K, Holmén J, Nehling A, Zvvartau EE (1999) Pharmacol Rev 51:83–133

    CAS  Google Scholar 

  3. Fisone G, Borgvist A, Usiello A (2004) Cell Mol Life Sci 61:857–872

    Article  CAS  Google Scholar 

  4. Mazzafera P (2002) Sci Agricol 59:815–821

    Article  CAS  Google Scholar 

  5. Fernandes O, Sabharwal M, Smiley T, Pastuszak A, Koren G, Einarson T (1998) Reprod Toxicol 12:435–444

    Article  CAS  Google Scholar 

  6. Yang A, Palmer AA, Wit HD (2010) Psychopharmacology 211:245–257

    Article  CAS  Google Scholar 

  7. Cooper C, Atkinson EJ, Wahner HW, O’Fallon WM, Riggs BL, Judd HL, Melton LJ, Bone J (1992) Miner Res 7:465–471

    Article  CAS  Google Scholar 

  8. Dash SS, Gummadi SN (2006) Biotechnol Lett 28:1993–2002

    Article  CAS  Google Scholar 

  9. Nebert DW, Russell DW (2002) Lancet 360:1155–1162

    Article  CAS  Google Scholar 

  10. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1993) DNA Cell Biol 12:1–15

    Article  CAS  Google Scholar 

  11. Kot M, Daniel WA (2008) Pharmacol Rep 60:789–797

    CAS  Google Scholar 

  12. Kot M, Daniel WA (2008) Biochem Pharmacol 76:543–551

    Article  CAS  Google Scholar 

  13. Kot M, Daniel WA (2008) Biochem Pharmacol 75:1538–1549

    Article  CAS  Google Scholar 

  14. Wang B, Zhou SF (2009) Curr Med Chem 16:4066–4218

    Article  CAS  Google Scholar 

  15. Wojcikowski J, Boksa J, Daniel WA (2010) Biochem Pharmacol 80:1252–1259

    Article  CAS  Google Scholar 

  16. Wójcikowski J, Basińska A, Daniel WA (2014) Biochem Pharmacol 90:188–195

    Article  Google Scholar 

  17. Agundez JA (2004) Curr Drug Metab 5:211–224

    Article  CAS  Google Scholar 

  18. Sansen S, Yano J, Reynald R, Schoch G, Griffin K, Stout C, Johnson E (2007) J Biol Chem 282:14348–14355

    Article  CAS  Google Scholar 

  19. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) Chem Rev 110:949–1017

    Article  CAS  Google Scholar 

  20. Schoneboom JC, Lin H, Reuter N, Thiel W, Cohen S, Ogliaro F, Shaik S (2002) J Am Chem Soc 124:8142–8151

    Article  Google Scholar 

  21. Schyman P, Lai WZ, Chen H, Wang Y, Shaik S (2011) J Am Chem Soc 133:7977–7984

    Article  CAS  Google Scholar 

  22. Schyman P, Usharani D, Wang Y, Shaik S (2010) J Phys Chem B 114:7078–7089

    Article  CAS  Google Scholar 

  23. Jurva U, Bissel P, Isin EM, Igarashi K, Kuttab S, Castagnoli N Jr (2005) J Am Chem Soc 127:12368–12377

    Article  CAS  Google Scholar 

  24. Cerny MA, Hanzlik RP (2006) J Am Chem Soc 128:3346–3354

    Article  CAS  Google Scholar 

  25. Bhakta MN, Hollenberg PF, Wimalasena K (2005) J Am Chem Soc 127:1376–1377

    Article  CAS  Google Scholar 

  26. Chen H, de Groot MJ, Vermeulen NPE, Hanzlik RP (1997) J Org Chem 62:8227–8230

    Article  CAS  Google Scholar 

  27. Ogliaro F, Harris N, Cohen S, Filatov M, de Visser SP, Shaik S (2000) J Am Chem Soc 122:8977–8989

    Article  CAS  Google Scholar 

  28. Harris N, Cohen S, Filatov M, Ogliaro F, Shaik S (2000) Angew Chem Int Ed 39:2003–2007

    Article  CAS  Google Scholar 

  29. Schroder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  CAS  Google Scholar 

  30. Kwiecien RA, Molinié R, Paneth P, Silvestre V, Lebreton J, Robins RJ (2011) Arch Biochem Biophys 510:35–41

    Article  CAS  Google Scholar 

  31. Li C, Wu W, Kumar D, Shaik S (2006) J Am Chem Soc 128:394–395

    Article  CAS  Google Scholar 

  32. Li DM, Wang Y, Yang CL, Han KL (2009) Dalton Trans 291–297

  33. Wang Y, Kumar D, Yang CL, Han KL, Shaik S (2007) J Phys Chem B 111:7700–7710

    Article  CAS  Google Scholar 

  34. Ginsberg G, Hattis D, Russ A, Sonawane B (2004) J Toxicol Environ Health A 67:297–329

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09 revision D01. Gaussian Inc, Wallingford

    Google Scholar 

  36. Wang Y, Wang HM, Wang YH, Yang CL, Yang L, Han KL (2006) J Phys Chem B 110:6154–6159

    Article  CAS  Google Scholar 

  37. Hirao H, Kumar D, Shaik S (2006) J Inorg Biochem 100:2054–2068

    Article  CAS  Google Scholar 

  38. Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM (2014) Chem Rev 114:3601–3658

    Article  CAS  Google Scholar 

  39. Zhang Q, Bell R, Truong TN (1995) J Phys Chem B 99:592–600

    Article  CAS  Google Scholar 

  40. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328

    Article  CAS  Google Scholar 

  41. Reed AE, Schleyer PR (1990) J Am Chem Soc 112:1434–1445

    Article  CAS  Google Scholar 

  42. Mennucci B (2012) WIREs Comput Mol Sci 2:386–404

    Article  CAS  Google Scholar 

  43. Schutz C, Warshel A (2001) Proteins 44:400–417

    Article  CAS  Google Scholar 

  44. de Visser SP, Ogliaro F, Sharma PK, Shaik S (2002) J Am Chem Soc 124:11809–11826

    Article  Google Scholar 

  45. Melander L, Saunders WH (1980) Reaction rates of isotopic molecules. Wiley, New York

    Google Scholar 

  46. Foster AB, Jarman M, Stevens JD, Thomas P, Westwood JH (1974) Chem Biol Interact 9:327–340

    Article  CAS  Google Scholar 

  47. Guengerich FP, Peterson LA, Bocker RH (1988) J Biol Chem 263:8176–8183

    CAS  Google Scholar 

  48. Higgins L, Bennett GA, Shimoji M, Jones JP (1998) Biochemistry 37:7039–7046

    Article  CAS  Google Scholar 

  49. Hanzlik RP, Ling KHJ (1993) J Am Chem Soc 115:9363–9370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (Grant No. 21203153), Science & Technology Department of Sichuan Province (Grant No. 2011JY0136), Sichuan Provincial Education Department (Grant Nos. 12ZA174 and 15ZA0208), China West Normal University (Grant No. 11B002), and North Sichuan Medical College (CBY14-QD-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeqin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Kang, Y., Zhang, C. et al. Metabolic mechanisms of caffeine catalyzed by cytochrome P450 isoenzyme 1A2: a theoretical study. Theor Chem Acc 134, 110 (2015). https://doi.org/10.1007/s00214-015-1690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1690-y

Keywords

Navigation