Skip to main content
Log in

Involvement of NO in fungal elicitor-induced activation of PAL and stimulation of taxol synthesis inTaxus chinensis suspension cells

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Elicitor prepared from the cell walls ofPenicillium citrinum induces multiple responses ofTaxus chinensis cells, including nitric oxide (NO) generation, sequentially followed by the activation of PAL and synthesis of taxol. NO scavenger cPITO and nitric oxide synthase (NOS) inhibitor PBITU prevent the latter two reactions, all of which are triggered in the absence of elicitor by NO donor sodium nitroprusside (SNP). The elicitor-induced NO release ofTaxus chinensis suspension cells is strongly inhibited by PBITU. These results demonstrate a causal relationship between NO generation and the latter two reactions ofTaxus chinensis cells to the elicitor, and also indicate that NO, produced via NOS inTaxus chinensis cells treated with fungal elicitor, might act as an essential signaling molecule for triggering the activation of PAL and synthesis of taxol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cragg, G. M., Schepartz, S. A., Suffness, M. et al., The taxol supply crisis-new NCI policies for handling the large-scale production of novel product anticancer and anti-HIV agents, J. Nat. Prod., 1993, 56(10): 1657–1668.

    Article  Google Scholar 

  2. Wu, J., Wang, C., Mei, X., Stimulation of taxol production and excretion in Taxus spp cell cultures by rare earth chemical lanthanum, J. Biotechnol., 2001, 85: 67–73.[DOI]

    Article  Google Scholar 

  3. Ebel, J., Scheel, D., Elicitor recognition and signal transduction, in Genes Involved in Plant Defense (eds. Boiler, T., Meins, F.), New York: Spnnger-Verlag, 1992, 183–205.

    Google Scholar 

  4. Roberts, S. C., Shuler, M. L., Large-scale plant cell culture, Curr. Op. Biotechnol., 1997, 8: 154–159.[DOI]

    Article  Google Scholar 

  5. Ciddi, V., Srinivasan, V., Shuler, M. L., Elicitation ofTaxus sp. cell cultures for production of taxol, Biotechnol Lett., 1995, 17: 1343–1346.

    Article  Google Scholar 

  6. Li, C., Yuan, Y. J., Ma, Z. H. et al., Changes of physiological state of suspension cultures ofTaxus chinensis var. mairei induced by oligosaccharide, J. Chem. Indus. & Engineer (in Chinese), 2002, 53(11): 1133–1138.

    Google Scholar 

  7. Dietrich, A., Mayer, J. E., Hahlbrock, K., Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures, J. Biol. Chem., 1990, 265: 6360–6368.

    Google Scholar 

  8. Nürnberger, T., Colling, C., Hahlbrock, K. et al., Perception and transduction of an elicitor signal in cultured parsley cells, Biochem. Soc. Symp., 1994, 60: 173–182.

    Google Scholar 

  9. Baker, C. J., Orlandi, E. W., Active oxygen in plant pathogenesis, Annu. Rev. Phytopathol., 1995, 33: 299–321.[DOI]

    Article  Google Scholar 

  10. Guan, Y. Y., Lin, M. J., The role of NO in human immunity system, New Medicine, 1999, 30(1): 55–57.

    Google Scholar 

  11. Guo, F. Q., Okamoto, M., Crawford, N. M., Identification of a plant nitric oxide synthase gene involved in hormonal signaling, Science, 2003, 302(5642): 100–103.[DOI]

    Article  Google Scholar 

  12. Morot-Gaudry-Talarmain, Y., Rockel, P., Moureaux, T. et al., Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense plants, Planta, 2002, 215: 708–715.[DOI]

    Article  Google Scholar 

  13. Beligni, M. V., Lamattina, L., Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants, Planta, 2000, 210: 215–222.

    Article  Google Scholar 

  14. Delledonne, M., Zeier, J., Marocco, A. et al., Signal interaction between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response, Proceeding of the National Academy of Science USA, 2001, 98: 13454–13459.[DOI]

    Article  Google Scholar 

  15. Durner, J., Wendehenne, D., Klessig, D. F., Defense gene induction in tobacco by nitric oxide, cyclic CMP and cyclic ADP-ribose, Proceeding of the National Academy of Science USA, 1998, 95: 10328–10333.[DOI]

    Article  Google Scholar 

  16. Delledonne, M., Xia, Y., Dixon, R. A. et al., Nitric oxide functions as a secondary signal in plant disease resistance, Nature, 1998, 394: 585–588.[DOI]

    Article  Google Scholar 

  17. Hu, X. Y., Neill, S. J., Cai, W. M. et al., NO-mediated hypersensitive responses of rice suspension cultures induced by incompatible elicitor, Chinese Science Bulletin, 2003, 48(4): 358–363.

    Google Scholar 

  18. Gamborg, O. L., Miller, R. A., Ojima, K., Nutrient requirements of suspension culture of soybean root cultures, Exp. Cell Res., 1968, 50: 151–158.

    Article  Google Scholar 

  19. Zhang, C. H., Mei, X. G., Liu, L. et al., Enhanced paclitaxel production induced by the combination of elicitors in cell suspension cultures ofTaxus chinensis, Biotechnol. Lett., 2000, 22: 1561–1564.[DOI]

    Article  Google Scholar 

  20. Ding, A. H., Nathan, C. F., Stuehr, D. J., Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production, J. Immunol., 1988, 141(7): 2407–2412.

    Google Scholar 

  21. Grant, J. J., Loake, G. X., Role of reactive oxygen intermediates and cognate redox signaling in disease resistance, Plant Physiol., 2000, 124: 21–30.[DOI]

    Article  Google Scholar 

  22. Seki, M., Takeda, M., Purusaki, S., Continuous production of taxol by cell culture ofTaxus cuspidate, Jpn. Chem. Eng., 1995, 28: 488–490.

    Article  Google Scholar 

  23. Pellinen, R. L., Korhonen, M. S., Tauriainen, A. A., Hydrogen peroxide activates cell death and defense gene expression in birch, Plant Physiol., 2002, 130: 549–560.[DOI]

    Article  Google Scholar 

  24. Jones, D. H., Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development, Phytochemistry, 1984, 23: 1349–1359.[DOI]

    Article  Google Scholar 

  25. Modolo, L. V., Cunha, P. Q., Braga, M. R. et al., Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to theDiaporthe phaseolorum f. sp.meridionalis elicitor, Plant Physiol., 2002, 130: 1288–1297.[DOI]

    Article  Google Scholar 

  26. Yue, Y. L., Ouyang, G. C., Metabolic basis of plant resistance to pathogen, in Plant Physiology and Molecular Biology (eds. Yu, S. W., Tang, Z. C.), Beijing: Science Press, 1999, 770–783.

    Google Scholar 

  27. Tavernier, E., Wendehenne, D., Blein, J. et al., Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells, Plant Physiol., 1995, 109(3): 1025–1031.

    Google Scholar 

  28. Dat, J. P., Pellinen, R., Beeckman, T., et al., Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco, Plant J., 2003, 33(4): 621–632.[DOI]

    Article  Google Scholar 

  29. Houot, V., Etienne, P., Petitot, A. S. et al., Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner, J. Exp. Bot., 2001, 52(361): 1721–1730.[DOI]

    Article  Google Scholar 

  30. Ortega, X., Polanco, R., Castaneda, P. et al., Signal transduction in lemon seedlings in the hypersensitive response against Alternaria alternata: participation of calmodulin, G-protein and protein kinases, Biol. Res., 2002, (3–4): 373–383.

    Google Scholar 

  31. Ligterink, W., Kroj, T., ZurNieden, U. et al., Receptor-mediated activation of a MAP kinase in pathogen defense of plants, Science, 1997, 276(5321): 2054–2057.[DOI]

    Article  Google Scholar 

  32. Euripedes, A., Ribeiro, Jr., Fernando, Q. et al., Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells, FEBS Lett., 1999, 445(2–3): 283–286.[DOI]

    Google Scholar 

  33. Cueto, M., Hernandez-Perera, O., Martin, R. et al., Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus, FEBS Lett, 1996, 398(2–3): 159–164.[DOI]

    Article  Google Scholar 

  34. Foissner, L., Wendehenne, D., Langebartels, C. et al.,In vivo imaging of an elicitor-induced nitric oxide burst in tobacco, Plant J., 2000, 23(6): 817–824.[DOI]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muyuan Zhu.

About this article

Cite this article

Xu, M., Dong, J. & Zhu, M. Involvement of NO in fungal elicitor-induced activation of PAL and stimulation of taxol synthesis inTaxus chinensis suspension cells. Chin. Sci. Bull. 49, 1038–1043 (2004). https://doi.org/10.1007/BF03184034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184034

Keywords

Navigation