Skip to main content
Log in

Superhydrophobicity from microstructured surface

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Superhydrophobicity is referred to the wettability of a solid surface which has a water apparent contact angle greater than 150°. It has attracted great interest in both fundamental researches and practical applications. This paper discusses two models: Wenzel model and Cassie model, to describe the superhydrophobic states of surface. The effects of surface morphology and microstructure on superhydrophobicity are discussed, and the internal relationship between Wenzel and Cassie states is presented. These two superhydrophobic states can coexist and they present different properties on contact angle hysteresis. It is reported that the irreversible transition can be realized from Cassie state to Wenzel state under some certain conditions. This paper also gives a review of recent progresses in the strategies of fabricating superhydrophobic surfaces by designing microstructured or microtextured surfaces. Finally, the fundamental research and applications of superhydrophobic surfaces are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lafuma, A., Quere, D., Superhydrophobic states, Nature materials, 2003, 2: 457–460.

    Article  Google Scholar 

  2. Feng, L., Li, S., Li, Y. et al., Super-hydrophobic surfaces: From natural to artificial, Adv. Mater., 2002, 14: 1857–1860.

    Article  Google Scholar 

  3. Blossey, R., Self-cleaning surfaces-virtual realities, Nature materials, 2003, 2: 301–306.

    Article  Google Scholar 

  4. Wang, R., Hashimoto, K., Fujishima, A. et al., Light-induced amphiphilic surfaces, Nature, 1997, 388: 431–432.

    Article  Google Scholar 

  5. Benedix, R., Dehn, F., Quaas, J. et al., Application of titanium dioxide photocatalysis to create self-cleaning building materials, Lacer, 2000, 5: 157–166.

    Google Scholar 

  6. Neinhuis, C., Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, 1997, 79: 667–677.

    Article  Google Scholar 

  7. Barthlott, W., Neinhuis, C., Purity of the sacred lotus or escape from contamination in biological surfaces, Planta, 1997, 202: 1–8.

    Article  Google Scholar 

  8. Gu, Z.-Z., Uetsuka, H., Takahashi, K. et al., Structure color and the lotus effect, Angew. Chem. Int. Ed., 2003, 42(8): 894–897.

    Article  Google Scholar 

  9. Wenzel, R. N., Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 1936, 28: 988–994.

    Article  Google Scholar 

  10. Cassie, A., Baxter, S., Wettability of porous surfaces, Trans. Faraday Soc., 1944, 40: 546–551.

    Article  Google Scholar 

  11. Shibuichi, S., Onda, T., Satoh, N. et al., Super water-repellent surfaces resulting from fractal structure, J. Phys. Chem., 1996, 100: 19512–19517.

    Article  Google Scholar 

  12. Cottin-Bizonne, C., Barrat, J.-L., Bocquet, L. et al., Low-friction flows of liquid at nanopatterned interfaces, Nature materials, 2003, 2: 237–240.

    Article  Google Scholar 

  13. McHale, G., Newton, M. I., Frenkel’s method and the dynamic wetting of heterogeneous planar surfaces, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2002, 206: 193–201.

    Article  Google Scholar 

  14. Taylor, G. I., Michael, D. H., On making holes in a sheet of fluid, J. Fluid Mech., 1973, 58: 625–639.

    Article  Google Scholar 

  15. Onda, T., Shibuichi, S., Satoh, N. et al., Super water-repellent fractal surfaces, Langmuir, 1996, 12: 2125–2127.

    Article  Google Scholar 

  16. Bico, J., Tordeux, C., Quere, D., Rough wetting, Europhys. Lett., 2001, 55(2): 214–220.

    Article  Google Scholar 

  17. Bico, J., Thiele, U., Quere, D., Wetting of textured surfaces, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2002, 206: 41–46.

    Article  Google Scholar 

  18. Patankar, N. A., On the modeling of hydrophobic contact angels on rough surfaces, Langmuir, 2003, 19: 1249–1253.

    Article  Google Scholar 

  19. Oner, D., McCarthy, T. J., Ultrahydrophobic surfaces, Effects of topography length scales on wettability, Langmuir, 2000, 16: 7777–7782.

    Article  Google Scholar 

  20. Yoshimitsu, Z., Nakajima, A., Watanable, T. et al., Effects of surface structure on the hydrophobicity and sliding behavior of water droplets, Langmuir, 2002, 18: 5818–5822.

    Article  Google Scholar 

  21. Ramos, S. M. M., Charlaix, E., Benyagoub, A., Contact angle hysteresis on nano-structured surfaces, Surface Science, 2003, 540: 355–362.

    Article  Google Scholar 

  22. Furmidge, C. G. L., Studies at phase interfaces, I. The sliding of liquid drops on solid surfaces and a theory for spray retention, J. Colloid Sci. 1962, 17, 309–324.

    Article  Google Scholar 

  23. Chen, W., Fadeev, A. Y., Hsieh, M. C. et al., Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples, Langmuir, 1999, 15: 3395–3399.

    Article  Google Scholar 

  24. Huppert, H. E., Flow and instability of a viscous current running down a slope, Nature, 1982, 300: 427–429.

    Article  Google Scholar 

  25. Aussillous, P., Quere, D., Liquid marbles, Nature, 2001, 411: 924–927.

    Article  Google Scholar 

  26. Richard, D., Clanet, C., Quere, D., Surface phenomena: Contact time of a bouncing drop, Nature, 2002, 417: 811.

    Article  Google Scholar 

  27. Richard, D., Quere, D., Viscous drops rolling on a tilted non-wettable solid, Europhys. Lett., 1999, 48: 286–291.

    Article  Google Scholar 

  28. Mahadevan, L., Pomeau, Y., Rolling droplets, Phys. Fluids, 1999, 11: 2449–2453.

    Article  Google Scholar 

  29. Kijlstra, J., Reihs, K., Klamt, A., Roughness and topology of ultra-hydrophobic surfaces, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2002, 206: 521–529.

    Article  Google Scholar 

  30. Zhang, X., Shi, F., Yu, X. et al., Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: Toward super-hydrophobic surface, J. Am. Chem. Soc., 2004, 126: 3064–3065.

    Article  Google Scholar 

  31. Buzio, R., Boragno, C., Biscarini, F. et al., The contact mechanics of fractal surfaces, Nature materials, 2003, 2: 233–236.

    Article  Google Scholar 

  32. Feng, L., Song, Y., Zhai, J. et al., Creation of a superhydrophobic surface from an amphiphilic polymer, Angew. Chem. Int. Ed., 2003, 42(7): 800–802.

    Article  Google Scholar 

  33. Jiang, L., Super-hydrophobic surfaces from natural to artificial, Modern Scientific Instruments (in Chinese), 2003, 3: 6–10.

    Google Scholar 

  34. He, B., Patankar, N. A., Lee, J., Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir, 2003, 19: 4999–5003.

    Article  Google Scholar 

  35. Rascon, C., Parry, A. O., Geometry-dominated fluid adsorption on sculpted solid substrates, Nature, 2000, 407: 986–989.

    Article  Google Scholar 

  36. Terray, A., Oakey, J., Marr, D. W. M., Microfluidic control using colloidal devices, Science, 2002, 296: 1841–1844.

    Article  Google Scholar 

  37. Seto, M., Westra, K., Brett, M., Arrays of self-sealed microchambers and channels, J. Mater. Chem., 2002, 12: 2348–2351.

    Article  Google Scholar 

  38. Zhao, B., Moore, J. S., Beebe, D., Principles of surface-directed liquid flow in microfluidic channels, J. Anal. Chem., 2002, 74(16): 4259–4268.

    Article  Google Scholar 

  39. Feng, X., Feng, L., Jin, M. et al., Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, J. Am. Chem. Soc., 2004, 126: 62–63.

    Article  Google Scholar 

  40. Blossey, R., Bosio, A., Contact line deposits and cDNA microar-rays: a “twin spot effect”, Langmuir, 2002, 18: 2952–2954.

    Article  Google Scholar 

  41. Herminghaus, S., Roughness-induced non-wetting, Europhys. Lett., 2000, 52(2): 165–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Wu.

About this article

Cite this article

Zheng, L., Wu, X., Lou, Z. et al. Superhydrophobicity from microstructured surface. Chin.Sci.Bull. 49, 1779–1787 (2004). https://doi.org/10.1007/BF03183400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183400

Keywords

Navigation