Skip to main content
Log in

Growth factor releasing porous poly (ɛ-caprolactone)-chitosan matrices for enhanced bone regenerative rherapy

  • Research Articles
  • Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Drug releasing porous potyts-caprolactone) (PCl)-chitosan matrices were fabricated for bone regenerative therapy. Porous matrices made of biodegradable polymers have been playing a crucial role as bone substitutes and as tissue-engineered scaffolds in bone regenerative therapy. The matrices provided mechanical support for the developing tissue and enhanced tissue formation by releasing active agent in controlled manner. Chitosan was employed to enhance hydrophilicity and biocompatibility of the PCl matrices. PDGF-88 was incorporated into PClchitosan matrices to induce enhanced bone regeneration efficacy. PCL-chitosan matrices retained a porous structure with a 100-200 urn pore diameter that was suitable for cellular migration and osteoid ingrowth. NaHC03 as a porogen was incorporated 5% ratio to polymer weight to form highly porous scaffolds. PDGF-88 was released from PCL-chitosan matrices maintaining therapeutic concentration for 4 week. High osteoblasts attachment level and proliferation was observed from PCL-chitosan matrices. Scanning electron microscopic examination indicated that cultured osteoblasts showed round form and spread pseudopods after 1 day and showed broad cytoplasmic extension after 14 days. PCL-chitosan matrices promoted bone regeneration and PDGF-8B loaded matrices obtained enhanced bone formation in rat calvarial defect. These results suggested that the PDGF-BB releasing PCL-chitosan porous matrices may be potentially used as tissue engineering scaffolds or bone substitutes with high bone regenerative efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benicewicz, B. C. and Hopper, P. K., Polymers for absorbable surgical sutures.J. Bioact. Compat. Polym., 6, 64–94 (1991).

    Article  CAS  Google Scholar 

  • Canalis, E., McCarthy, T. L. and Centrella, M., Effects of platelet-derived growth factor on bone formationin vitro.J. Cell Physiol., 140, 530–537 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Corden, T. J., Jones, I. A., Rudd, C. D., Christian, P., Downes, S., and Mcdougall, K. E., A novel manufacturing technique for long-fibre composite materi Physical and biocompatibility properties of poly-s-caprolactone producedusingin situ polymerization als.Biomaterials, 21, 713–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Damien, J. C. and Parson, J. R., Bone graft and bone graft substitutes: A review of current technologyand applications.J. Appl. Biomater., 2, 187–208 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Du, C., Cui, F. Z., Zhu, X. D. and Groot, K., Three-dimensional nano-Hap/collagen matrix loading with osteogenic cells in organculture.J. Biomed. Mater. Res, 44, 407–415 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Eiselt, P., Yeh, J., latvala, R. K., Shea, L. D. and Mooney, D. J., Porous carriers for biomedical applications basedon alginate hydrogels.Biomaterials, 21, 1921–1927 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Holland, S., Tighe, B. J. and Gould, Pl., Polymers for biodegradable medical devices. I. The potential of polyesters as controlled macromolecular release systems.J. Control Release, 4, 155–180 (1986).

    Article  CAS  Google Scholar 

  • Hubbell, J. A., Biomaterials in tissue engineering.Bio/Technol., 13, 565–75 (1995).

    Article  CAS  Google Scholar 

  • Ishaug, S. L., Crane, G. M., Miller, M. J., Yasko, A. W., Yaszemski, M. J. and Mikos, A. G., Bone formation by three-dimensional stomal osteoblast culture un biodegradable polymerscaffolds.J Biomed. Mater. Res., 36, 17–28 (1997)

    Article  CAS  PubMed  Google Scholar 

  • Klawitter, J. J. and Hulbert, S. F., Application of porousceramics for the attachment of load-bearing orthopedicapplications.J. Biomed. Mater. Res Symp., 2. 161 (1971).

    Article  Google Scholar 

  • Langer, R., and Vacanti, J. P., Tissue engineering.Science, 260, 920–926 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Liu, L. 0., Tho’paon, A. Y., Heidaran, M. A., Poser, J. Wand Spiro, R. C., An osteoconductive collagen/hyaluronate matrix for bone regeneration.Biomaterials, 20, 1097–1108 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, S. E., Castilla, S. E., Williams, R. C., Kiritsy, C. P., Howell, T. H., Reddy, M. S., and Antoniades, H. N., The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing.J. Periodontal., 62, 458–467 (1991).

    CAS  Google Scholar 

  • Matsuda, N., Lin, W. L., Kumar, N. M., Cho, M. I., and Genco, R. J., Mitogenic, chemotactic and synthetic response of rat periodontal ligament fibroblastic cells to polypeptide growth factorsin vitro.J. Periodontal., 63, 515–525 (1992).

    CAS  Google Scholar 

  • Park, J. B., Matsuura, M., Han, Norderyd, 0., Lin, W. L., Genco, R. J. and Cho, M. I., Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor.J. Periodontal., 66, 462–477 (1995).

    CAS  Google Scholar 

  • Pulio, D. A., Holleran, L. A., Doremus, R. H. and Bizios, R., Osteoblast responses to orthopedic implant materialsin vitro.J. Biomed. Mater. Res., 25, 711–723 (1991).

    Article  Google Scholar 

  • Sepe, W. W., Bowers, G. M. and Lawrence, J. J., Clinical evaluation of freeze-dried bone allografts in periodontal osseous defects.J. Periodontal., 49, 9–14 (1978).

    CAS  Google Scholar 

  • Schmitz, J. P. and Hollinger, J. 0., The critical sized defect as an experimental model for craniomandibulofacial nonunions.Clin. Orthop., 205, 299–308 (1986).

    PubMed  Google Scholar 

  • Vandamme, Th. F. and Legras, R., Physico-mechanical properties of polyte-caprolactone) for the construction of rumino-reticulum devices for grazing animals.Biomaterials, 16, 1395–1400 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Vunjak-Novakovic, G., Obradovic, B., Matin, I., Bursae, P. M., Langer, R. and Freed, L. E., Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering.Biotechnol. Prog., 14, 193–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. and Zhang, M., Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering.J. Biomed. Mater. Res., 55, 304–312 (2001 ).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, S.Y., Cho, S.H., Hwang, J.H. et al. Growth factor releasing porous poly (ɛ-caprolactone)-chitosan matrices for enhanced bone regenerative rherapy. Arch Pharm Res 26, 76–82 (2003). https://doi.org/10.1007/BF03179936

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179936

Key words

Navigation