Skip to main content
Log in

Software tool for portal dosimetry research

  • Technical Note
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio. NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webb, S.,The physical basis of IMRT and inverse planning, British Journal of Radiology, 76:678–689, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Ezzell, G.A., Galvin, J.M., Low, D., Palta, J.R., Rosen, I., Sharpe, M.B., Xia, P., Xiao, Y., Xing, L. and Yu, C.X.,Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee, Med. Phys., 30:2089–2115, 2003.

    Article  PubMed  Google Scholar 

  3. Munro, P.,Megavoltage Radiography for Treatment Verification, In: Van Dyk J, editor. The Modern Technology of Radiation Oncology. Vol 1. Madison: Medical Physics Publishing; pp. 481–508, 1999.

  4. Budgell, G.J., Zhang, R. and Mackay, R.I.,Daily monitoring of linear accelerator beam parameters using an amporphous silicon EPID. Phys. Med. Biol., 52:1721–1733, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. McCurdy, B.M.C., Luchka, K. and Pistorius, S.,Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device. Med. Phys., 28:911–924, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. Van Esch, A., Depuydt, T. and Huyskens, D.P.,The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields, Radiother Oncol, 71:223–234, 2004.

    Article  PubMed  Google Scholar 

  7. Chang, J., Obcemea, C.H., Sillanpaa, J., Mechalakos, J. and Burman, C.,Use of EPID for leaf position accuracy QA of dynamic multi-leaf collimator (DMLC) treatment, Med. Phys., 31:2091–2096, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Greer, P.B. and Popescu, C.C.,Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy, Med. Phys., 30:1618–1627, 2003.

    Article  PubMed  Google Scholar 

  9. Kim, J.O., Siebers, J.V., Keall, P.J., Arnfield, M.R. and Mohan, R.,A Monte Carlo study of radiation transport through multileaf collimators, Med. Phys., 28:2497–2506, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Kirkby, C. and Sloboda, R.,Consequences of the spectral response of an a-Si EPID and implications for dosimetric calibration, Med. Phys., 32:2649–2658, 2005.

    Article  CAS  PubMed  Google Scholar 

  11. Greer, P.B., Vial, P., Oliver, L. and Baldock, C.,Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams, Med. Phys., 34:4389–4398, 2007.

    Article  CAS  PubMed  Google Scholar 

  12. Li, W., Siebers, J.V. and Moore, J.A.,Using fluence separation to account for energy spectra dependence in computing dosimetric a-Si EPID images for IMRT fields, Med. Phys., 33:4468–4480, 2006.

    Article  PubMed  Google Scholar 

  13. Siebers, J.V., Kim, J.O., Ko, L., Keall, P.J. and Mohan, R.,Monte Carlo computation of dosimetric amorphous silicon electronic portal images, Med. Phys., 31:2135–2146, 2004.

    Article  PubMed  Google Scholar 

  14. Nicolini, G., Fogliata, A., Vanetti, E., Clivio, A. and Cozzi, L.,GLAaS: An absolute dose calibration algorithm for an amorphous silicon portal imager. Applications to IMRT verification, Med. Phys., 33:2839–2851, 2006.

    Article  PubMed  Google Scholar 

  15. Vial, P., Greer, P.B., Hunt, P., Oliver, L. and Baldock, C.,The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams, Med. Phys., 35:1267–1277, 2008.

    Article  CAS  PubMed  Google Scholar 

  16. Xing, L. and Li, J.G.,Computer verification of fluence map for intensity modulated radiation therapy, Med. Phys., 27:2084–2092, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Boyer, A., Xing, L., Ma, C.M., Curran, B., Hill, R., Kania, A. and Bleier, A.,Theoretical considerations of monitor unit calculations for intensity modulated beam treatment planning, Med. Phys., 26:187–195, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, X., Yue, N.J., Chen, W., Saw, C.B., Heron, D.E., Stefanik, D., Antemann, R. and Huq, M.S.,A dose verification method using a monitor unit matrix for dynamic IMRT on Varian linear accelerators, Phys. Med. Biol., 50:5641–5652, 2005.

    Article  PubMed  Google Scholar 

  19. Spirou, S.V. and Chui, C.S.,Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators, Med. Phys., 21:1031–1041, 1994.

    Article  CAS  PubMed  Google Scholar 

  20. Rosca, F. and Zygmanski, P.,An EPID response calculation algorithm using spatial beam characteristics of primary, head scattered and MLC transmitted radiation, Med. Phys., 35:2224–2234, 2008.

    Article  PubMed  Google Scholar 

  21. Vial, P., Oliver, L. and Baldock, C.,Evaluation of a commercial portal imaging dosimeter for intensity modulated radiotherapy, Australas. Phys. Eng. Sci. Med., 29:367–368, Abstract, 2006.

    Google Scholar 

  22. Chauvet, I., Petitfils, A., Lehobey, C., Kristner, J.Y., Brunet, Y., Lembrez, R., Gaboriaud, G., Mazal, A., Zefkili, S. and Rosenwald, J-C.,The sliding slit test for dynamic IMRT: a useful tool for adjustment of MLC related parameters, Phys. Med. Biol., 50:563–580, 2005.

    Article  CAS  PubMed  Google Scholar 

  23. Vial, P., Oliver, L., Greer, P.B. and Baldock, C.,An experimental investigation into the radiation field offset of a dynamic multileaf collimator, Phys. Med. Biol., 51:5517–5538, 2006.

    Article  PubMed  Google Scholar 

  24. Low, D., Harms, W.B., Mutic, S. and Purdy, J.A.,A technique for the quantitative evaluation of dose distributions, Med. Phys., 25:656–661, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vial.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vial, P., Hunt, P., Greer, P.B. et al. Software tool for portal dosimetry research. Australas. Phys. Eng. Sci. Med. 31, 216–222 (2008). https://doi.org/10.1007/BF03179347

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179347

Key words

Navigation