Skip to main content
Log in

Technological approaches to in-room CBCT imaging

  • Review Article
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The use of Cone-Beam Computed Tomography (CBCT) in Image-Guided Radiation Therapy (IGRT) has become increasingly feasible and popular in recent years. Advances and developments in Flat-Panel Imager (FPI) technology and image reconstruction software allow for linac-mounted 3D CBCT imaging. Taking CBCT images on a daily/weekly basis, offers the possibility to guide the treatment beam according to tumour motion and to apply changes to the treatment plan if necessary. This however raises the issue of additional imaging dose and thus increases in secondary cancer risk. The performance characteristics of kV-CBCT and MV-CBCT solutions currently offered by Elekta, Siemens and Varian are compared in this paper in terms of additional imaging dose and image quality. The review also outlines applications of CBCT for IGRT and Adaptive Radiotherapy (ART). As CBCT is not the only in-room IGRT platform, helical MV-CT (Tomotherapy) and in-room CT designs are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ICRU Report 50,Prescribing, Recording and Reporting Photon Beam Therapy, International Commission on Radiation Units and Measurements, Bethesda, MD, 1993.

  2. ICRU Report 62,Prescribing, Recording and Reporting Photon Beam Therapy (supplement to ICRU Report. 50), International Commission on Radiation Units and Measurements, Bethesda, MD, 1999.

  3. Willoughby, T., Kupelian, P., Pouliot, J. et al,Target localization and real-time tumor tracking using the Calypso 4D localization system in patients with localized prostate cancer, Int. J. Radiat. Oncol. Biol. Phys., 65 (2): 528–534, 2006.

    PubMed  Google Scholar 

  4. Balter, J., Wright, J., Newell, L. et al,Accuracy of a wireless localization system for radiotherapy, Int. J. Radiat. Oncol. Biol. Phys., 61 (3): 933–937, 2005.

    PubMed  Google Scholar 

  5. Gerszten, P., Ozhasoglu, C., Burton, S. et al,Evaluation of CyberKnife frameless real-time image-guided stereotactic radiosurgery for spinal lesions, Stereotact. Funct. Neurosurg., 81 (1–4): 84–89, 2003.

    Article  PubMed  Google Scholar 

  6. Chang, S., Main, W., Martin, D. et al,An analysis of the accuracy of the Cyberknife: A robotic frameless stereotactic radiosurgical system, Neurosurgery, 52 (1): 140–147, 2003.

    Article  PubMed  Google Scholar 

  7. Raaymakers, B., Raaijmakers, A., Kotte, A. et al,Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Dose deposition in a transverse magnetic field, Phys. Med. Biol., 49 (17): 4108–4118, 2004.

    Article  Google Scholar 

  8. Lagendijk, J., Raaymakers, B., Raaijmakers, A. et al,MRI/linac integration, Radiother. Oncol., 86: 25–29, 2008.

    Article  PubMed  Google Scholar 

  9. Van Dyk, J.The Modern Technology of Radiation Oncology. Medical Physics Publishing, Madison, WI, USA. 1999.

  10. Kalender, W.,X-ray computed tomography, Phys. Med. Biol. 51: R29-R43, 2006.

    Article  PubMed  Google Scholar 

  11. Prokop, M., Galanski, M.,Spiral and Multislice CT of the Body, Thieme, New York, NY, 2003.

    Google Scholar 

  12. Jaffray, D., Siewerdsen, J., Wong, J. et al,Flat-panel cone-beam computed tomography for image-guided radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 53 (5): 1337–1349, 2002.

    Article  PubMed  Google Scholar 

  13. Jaffray, D. and Siewerdsen, J., Cone-beam computed tomography with a flat-panel imager: Initial performance characterization, Med. Phys., 27 (6): 1311–1323, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Ford, E., Mageras, G., Yorke, E. et al,Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging, Int. J. Radiat. Oncol. Biol. Phys., 52 (2): 522–531, 2002.

    CAS  PubMed  Google Scholar 

  15. Jaffray, D.,Emergent Technologies for 3-dimensional image-guided radiation delivery, Semin. Radiat. Oncol., 15: 208–216, 2005.

    Article  PubMed  Google Scholar 

  16. Balter, J. and Kessler, M.,Imaging and alignment for image-guided radiation therapy, J. Clin. Oncol., 25 (8): 931–937, 2007.

    Article  PubMed  Google Scholar 

  17. Dawson, L. and Jaffray, D.,Advances in image-guided radiation therapy, J. Clin. Oncol., 25 (8): 938–946, 2007.

    Article  PubMed  Google Scholar 

  18. Kirby, M. and Glendinning, A.,Developments in electronic portal imaging systems, Br. J. Radiol., 79: S50-S65, 2006.

    Article  PubMed  Google Scholar 

  19. Jaffray, D., Kupelian, P., Djemil, T. et al,Review of image-guided radiation therapy, Expert Rev. Anticancer Ther., 7 (1): 89–103, 2007.

    Article  PubMed  Google Scholar 

  20. Yan, D., Vicini, F., Wong, J. et al,Adaptive radiation therapy, Phys. Med. Biol., 42 (1): 52–64, 1997.

    Article  Google Scholar 

  21. Yan, D., Lockman, D., Brabbins, D. et al,An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer, Int. J. Radiat. Oncol. Biol. Phys., 48 (1): 289–302, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Van Herk, M.,Errors and margins in radiotherapy, Sem. Radiat. Oncol., 14 (1): 52–64, 2004.

    Article  Google Scholar 

  23. Brabbins, D., Martinez, A., Yan, D. et al,A dose-escalation trial with the adaptive radiotherapy process as a delivery system in localized prostate cancer: analysis of chronic toxicity, Int. J. Radiat. Oncol. Biol. Phys., 61 (2): 400–408, 2005.

    PubMed  Google Scholar 

  24. Takayama, K., Nagano, K., Mizowaki, T., et al,Application of a newly developed high-accuracy image guided radiation therapy system to stereotactic radiosurgery, Int. J. Radiat. Oncol. Biol. Phys., 69 (3): S627-S628, 2007.

    Google Scholar 

  25. ICRU Report 44,Tissue Substitutes in Radiation Dosimetry and Measurement, International Commission on Radiation Units and Measurements, Bethesda, MD, 1989.

    Google Scholar 

  26. Tward, D., Siewerdsen, J., Daly, M. et al,Soft-tissue detectability in cone-beam CT: Evaluation by 2AFC tests in relation to physical performance metrics, Med. Phys., 34 (11): 4459–4471, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Groh, B., Siewerdsen, J., Dranke, D. et al,A performance comparison of flat-panel imager-based MV and kV cone-beam CT, Med. Phys., 29 (6): 967–975, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Hill, M.,The variation in biological effectiveness of x-rays and gamma rays with energy, Radiat. Prot. Dosim., 112 (4): 471–481, 2004.

    Article  CAS  Google Scholar 

  29. ICRP 60.Recommendations of the International Commission of Radiological Protection. Oxford, UK. Pergamon Press, 1991.

    Google Scholar 

  30. Sharpe, M., Moseley, D., Purdie, T. et al,The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator, Med. Phys., 33 (1): 136–144, 2006.

    Article  PubMed  Google Scholar 

  31. Amer, A., Marchant, T., Sykes, J. et al,Imaging doses from the Elekta Synergy X-ray cone beam CT system, Br. J. Radiol., 80: 476–482, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Aird, E.,Second cancer risk, concomitant exposure IRMER(2000), Br. J. Radiol., 77: 983–985, 2004.

    Article  CAS  PubMed  Google Scholar 

  33. Shrimpton, P., Hillier, M., Lewis, M. et al,Doses from computed tomography (CT) examinations in the UK — 2003 Review. NRPB-W67. Chilton, UK, 2005.

    Google Scholar 

  34. Valentin J.,Radiation and your patient: a guide for medical practitioners: ICRP Supporting Guidance 2. Annals ICRP, 31 (1), 2001.

  35. Islam, M., Purdie, T., Norrlinger, B. et al,Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy, Med. Phys., 33 (6): 1573–1582, 2006.

    Article  PubMed  Google Scholar 

  36. Nijkamp, J., Pos, F., Nuver, T. et al,Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results, Int. J. Radiat. Oncol. Biol. Phys., 70 (1): 75–82, 2008.

    PubMed  Google Scholar 

  37. Nuver, T., Hoogeman, M., Remeijer, P. et al,An adaptive off-line procedure for radiotherapy of prostate cancer, Int. J. Radiat. Oncol. Biol. Phys., 67: 1559–1567, 2007.

    PubMed  Google Scholar 

  38. Smitsmans, M., De Bois, J., Sonke, J. et al.,Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy, Int. J. Radiat. Oncol. Biol. Phys., 63 (4): 975–984, 2005.

    PubMed  Google Scholar 

  39. Burridge, N., Amer, A., Marchant, T. et al,Online adaptive radiotherapy of the bladder: Small bowel irradiated-volume reduction, Int. J. Radiat. Oncol. Biol. Phys., 66 (3): 892–897, 2006.

    PubMed  Google Scholar 

  40. Yoo, S., Kim, G., Hammoud, R. et al,A quality assurance program for the on-board imager, Med. Phys., 33 (11), 443–4447, 2006.

    Article  Google Scholar 

  41. Kan, M., Leung, L., Wong, W. et al,Radiation dose from cone beam computed tomography for image-guided radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 70: 272–279, 2008.

    CAS  PubMed  Google Scholar 

  42. Keall, P.,4-Dimensional computed tomography imaging and treatment planning, Semin. Radiat. Oncol., 14 (1): 81–90, 2004.

    Article  PubMed  Google Scholar 

  43. Lu, J., Guerrero, T., Munro, P. et al,Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling, Med. Phys., 34 (9): 3520–3529, 2007.

    Article  PubMed  Google Scholar 

  44. Sonke, J., Zijp, L., Remeijer, P. et al,Respiratory related cone beam CT, Med. Phys., 32 (4): 1176–1186, 2005.

    Article  PubMed  Google Scholar 

  45. Li, T., Xing, L.,Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy, Int. J. Radiat. Oncol. Biol. Phys., 67 (4): 1211–1219, 2007.

    PubMed  Google Scholar 

  46. Song, W., Kamath, S., Ozawa, S. et al,A dose comparison study between XVI and OBI CBCT systems, Med. Phys., 35 (2): 480–486, 2008.

    Article  PubMed  Google Scholar 

  47. Nickoloff, E., Dutta, A. and Lu, Z.,Influence of phantom diameter, kVp and scan mode upon computed tomography dose index, Med. Phys., 30 (3), 395–402, 2003.

    Article  PubMed  Google Scholar 

  48. Tücking, T.,Development and realization of the IGRT inline concept, Dissertation, Universität Heidelberg, 2007.

    Google Scholar 

  49. Nill, S., Unkelbach, J., Dietrich, L. et al,Online correction for respiratory motion: evaluation of two different beam geometries, Phys. Med. Biol., 50 (17): 4087–4096, 2005.

    Article  PubMed  Google Scholar 

  50. Stützel, J., Oelfke, U. and Nill, S.,A quantitative image quality comparison of four different image guided radiotherapy devices, Radiother. Oncol., 86: 20–24, 2008.

    Article  PubMed  Google Scholar 

  51. Midgley, S., Millar, R. and Dudson, J.,A feasibility study for megavoltage cone beam CT using a commercial EPID, Phys. Med. Biol., 43 (1): 155–169, 1998.

    Article  CAS  PubMed  Google Scholar 

  52. Guan, H. and Zhu, Y.,Feasibility of megavoltage portal CT using an electronic portal imaging device (EPID) and a multi-level scheme algebraic reconstruction technique (MLS-ART), Phys. Med. Biol., 43 (10): 2925–2937, 1998.

    Article  CAS  PubMed  Google Scholar 

  53. Morin, O., Gillis, A., Chen, J. et al,Megavoltage cone-beam CT: System description and clinical application, Med. Dosim., 31 (1): 51–61, 2006.

    Article  PubMed  Google Scholar 

  54. Gayou, O. and Miften, M.,Commissioning and clinical implementation of a mega-voltage cone beam CT system for treatment localization, Med. Phys., 34 (8): 3183–3192, 2007.

    Article  PubMed  Google Scholar 

  55. Hansen, E., Larson, D., Aubin, M. et al,Image-guided radiotherapy using megavoltage cone-beam computed tomography for treatment of paraspinous tumors in the presence of orthopedic hardware, Int. J. Radiat. Oncol. Biol. Phys., 66 (2): 323–326, 2006.

    PubMed  Google Scholar 

  56. Aubin, M., Morin, O., Chen, J. et al,The use of megavoltage cone-beam CT to complement CT for target definition in pelvic radiotherapy in the presence of hip replacement, Br. J. Radiol., 79: 918–921, 2006.

    Article  CAS  PubMed  Google Scholar 

  57. Morin, O., Gillis, A., Descovich, M. et al,Patient dose considerations for routine megavoltage cone-beam CT imaging, Med. Phys., 34 (5):1819–1827, 2007.

    Article  PubMed  Google Scholar 

  58. Pouliot, J., Bani-Hashemi, A., Chen, J. et al,Low-dose megavoltage cone-beam CT for radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 61 (2): 552–569, 2005.

    PubMed  Google Scholar 

  59. Gayou, O., Parda, D., Johnson, M. et al,Patient dose and image quality from mega-voltage cone beam computed tomography imaging, Med. Phys., 34 (2), 499–506, 2007.

    Article  CAS  PubMed  Google Scholar 

  60. Miften, M., Leicher, B., Parda, D. et al,IMRT planning and delivery incorporating daily dose from mega-voltage conebeam computed tomography imaging, Med. Phys., 34 (10): 3760–3767, 2007.

    Article  PubMed  Google Scholar 

  61. Chen, J., Morin, O., Aubin, M. et al,Dose-guided radiation therapy with megavoltage cone-beam CT, Br. J. Radiol., 79: S87-S98, 2006.

    Article  PubMed  Google Scholar 

  62. Mackie, T., Balog, J., Ruchala, K. et al,Tomotherapy, Semin. Radiat. Oncol., 9: 108–117, 1999.

    Article  CAS  PubMed  Google Scholar 

  63. Mackie, T.,History of Tomotherapy, Phys Med Biol, 51: R427-R453, 2006.

    Article  CAS  PubMed  Google Scholar 

  64. Ramsey, C., Seibert, R., Mahan, S. et al,Out-of-field dosimetry measurements for a helical tomotherapy system, J. App. Clinical Med. Phys., 7 (3): 1–11, 2006.

    Google Scholar 

  65. Jeraj, R., Mackie, T., Balog, J. et al,Radiation characteristics of helical tomography, Med. Phys. 31 (2): 396–404, 2004.

    Article  PubMed  Google Scholar 

  66. Bauman, G., Yartsev, S., Rodrigues, G. et al,A prospective evaluation of helical tomotherapy, Int. J. Radiat. Onc. Biol. Phys., 68 (2): 632–641, 2007.

    Article  Google Scholar 

  67. Bijdekerke, P., Verellen, D., Tournel, K. et al,TomoTherapy: Implications on daily workload and scheduling patients, Radiother. Oncol., 86: 224–230, 2008.

    Article  PubMed  Google Scholar 

  68. Meeks, S., Harmon, J., Langen, K. et al,Performance characterization of megavolotage computed tomography imaging on a helical tomotherapy unit, Med. Phys., 32 (8): 2673–2681, 2005.

    Article  PubMed  Google Scholar 

  69. Shah, A., Langen, K., Ruchala, K. et al,Patient-specific dose from megavoltage CT imaging with a helical tomotherapy unit, Int. J. Radiat. Oncol. Biol. Phys., 69 (3): S193-S194, 2007.

    Google Scholar 

  70. Uematsu, M., Fukui, T., Shioda, A. et al,A dual computed tomography linear accelearator unit for stereotactic radiation therapy: A new approach without cranically fixated stereotactic frames, Int. J. Radiat. Oncol. Biol. Phys., 35 (3): 587–592, 1996.

    Article  CAS  PubMed  Google Scholar 

  71. Kuriyama, K., Onishi, H., Sano, N. et al,A new irradiation unit constructed of self-moving gantry-CT and LINAC, Int. J. Radiat. Oncol. Biol. Phys., 55 (2): 428–435, 2003.

    PubMed  Google Scholar 

  72. Court, L., Rosen, I., Mohan, R. et al,Evaluation of mechanical precision and alignment uncertainties for an integrated CT/LINAC system, Med. Phys., 30 (6): 1198–1210, 2003.

    Article  PubMed  Google Scholar 

  73. Thieke, C., Malsch, U., Schlegel, W. et al,Kilovoltage CT using a linac-CT scanner combination, Br. J. Radiol., 79: S79-S86, 2006.

    Article  PubMed  Google Scholar 

  74. Moore, C., Amer, A., Marchant, T. et al,Developments in and experience of kilovoltage x-ray cone-beam image-guided radiotherapy, Br. J. Radiol., 79: S66-S78, 2006.

    Article  PubMed  Google Scholar 

  75. Geinitz, H., Zimmermann, F., Kuzmany, A. et al,Daily CT planning during boost irradiation of prostate cancer, Strahlenther Onkol, 176 (9): 429–432, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Steinke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinke, M.F., Bezak, E. Technological approaches to in-room CBCT imaging. Australas. Phys. Eng. Sci. Med. 31, 167–179 (2008). https://doi.org/10.1007/BF03179341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179341

Key words

Navigation