Skip to main content
Log in

Dosimetry parameters of BARC OcuProsta I-125 seed source

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

A new model of125I seed source, named OcuProsta seed, was designed and fabricated by Radiopharmaceuticals Division of Bhabha Atomic Research Centre for ophthalmic and interstitial applications. AAPM TG 43 recommended dosimetry parameters for this seed source were determined experimentally using TLD as well as by Monte Carlo (MC) simulation. Measured and MC calculated values of the dose rate constant (DRC) are 0.95±0.065 cGyh−1U−1 and 0.972±0.005 cGyh−1U−1, respectively. The mean of measured and calculated DRC (Λ=0.96 cGyh−1U−1) was recommended for the clinical dosimetry of OcuProsta seed. Measured and MC calculated radial dose function, g(r), anisotropy function, F(r,θ), anisotropy factor and anisotropy constants are also found to be in good agreement to each other. Dosimetry parameters of OcuProsta seed were compared with the published values of similar in-design125I seed sources. The DRC of BARC OcuProsta seed is very close to Amersham 6711 seed and is also comparable to the DRC of Best model 2301, Syncor PharmaSeed and Isotron selectSeed within the uncertainty of measurement/calculation. The g(r) of OcuProsta seed shows a difference of up to 10% in comparison to the g(r) values of the similar in-design seed sources. The values of anisotropy function of OcuProsta are 7 – 13% different from the anisotropy function of Amersham 6711 and Syncor PharmaSeed. The anisotropy constant of OcuProsta is close to Amersham 6711 seed while it is about 9% smaller than the anisotropy constant of Best model 2301 and Synchor PharmaSeed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez, C. A., Grigsby, P. W. and Williamson, J. F.,Clinical applications of brachytherapy: I. Low dose rate, in Principles and Practice of Radiation Oncology, 3rd ed., Lippincott-Raven, Philadelphia, 487–559, 1997.

    Google Scholar 

  2. Nori, D.,Conformal brachytherapy of prostate cancer: an effective outpatient treatment, Cancer Watch 1: 124–126, 1992.

    Google Scholar 

  3. Russel, K. J. and Blasko, J. C.,Recent advances in interstitial brachytherapy for localized prostate cancer, Probl. Urology 7: 260–278, 1993.

    Google Scholar 

  4. Nath, R., Anderson, L. L., Luxton, G., Weaver, K. A., Williamson, J. F. and Meigooni, A. S.,Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43, Med. Phys. 22(2): 209–234, 1995.

    Article  CAS  PubMed  Google Scholar 

  5. Manolkar, R. B., Sane, S. U., Pillai, K. T. and Majali, M. A.,Comparison of method for preparation of 125 I source cores for the treatment of eye cancer, Appl. Radiat. Isot. 59: 145–150, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Williamson, J. F., Coursey, B. M., DeWerd, L. A., Hanson, W. F., Nath, R. and Ibbott, G.,Guidance to users of Nicomed Amersham and North American scientific Inc. I-125 Interstitial sources: Dosimetry and Calibration changes: recommendations of the AAPM RTC ad hoc Sub Committee on low energy seed dosimetry, Med. Phys. 26(4): 570–573, 1999.

    Article  CAS  PubMed  Google Scholar 

  7. International Atomic Energy Agency (IAEA),Calibration of photon and beta-ray sources used in brachytherapy, TECDOC-1274, IAEA, Vienna, Austria, 2002.

    Google Scholar 

  8. Karaiskos, P., Angelopoulos, A., Sakelliou, L., Sandilos, P., Antypas, C., Vlachos, L. and Koutsouveli, E.,Monte Carlo and TLD dosimetry of an 192 Ir high dose rate brachytherapy source, Med. Phys. 25: 1975–1984, 1998.

    Article  CAS  PubMed  Google Scholar 

  9. Pradhan, A. S. and Quast, U.,In-phantom response of LiF TLD-100 for dosimetry of 192 Ir HDR source, Med. Phys. 27: 1025–1030, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Nath, R., Meigooni, A. S. and Meli, J. A.,Dosimetry on the transverse axis of I-125 and Ir-192 interstitial brachytherapy sources, Med. Phys. 17: 1032–1040, 1990.

    Article  CAS  PubMed  Google Scholar 

  11. Wallace, R. E. and Fan, J. J.,Report on the dosimetry of a new design 125 Iodine brachytherapy source, Med. Phys. 26: 1925–1931, 2001.

    Article  Google Scholar 

  12. Meigooni, A. S., Gearheart, D. M. and Sowards, K.,Experimental determination of dosimetric characteristics of Best 125 I brachytherapy source, Med. Phys. 27 (9): 2168–2173, 2000.

    Article  CAS  PubMed  Google Scholar 

  13. Popescu, C. C., Wise, J., Sowards, K., Meigooni, A. S. and Ibbott, G. S.,Dosimetric characteristics of the Pharma seed model BT-125-I source, Med Phys. 27(9): 2174–2181, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Meigooni, A. S., Meli, J. A. and Nath, R.,A comparison of solid phantoms with water for dosimetry of 125 I brachytherapy sources, Med. Phys. 15(5): 695–701, 1988.

    Article  CAS  PubMed  Google Scholar 

  15. Meigooni, A. S., Yoe-Sein, M. M., Al-Otoom, A. Y. and Sowards, K. T.,Determination of the dosimetric characteristics of InterSource125 Iodide brachytherapy source, Appl. Radiat. Isot. 56: 589–599, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Williamson, J. F. and Meigooni, A. S.,Brachytherapy Physics, Medical Physics Publishing, Madison, 88–133, 1995.

  17. Luxton, G.,Comparison of radiation dosimetry in water and in solid phantom materials for I-125 and Pd-103 brachytherapy sources: EGS4 Monte Carlo study, Med. Phys. 21: 631–641, 1994.

    Article  CAS  PubMed  Google Scholar 

  18. Los Alamos Monte Carlo Group,MCNP-A General Monte Carlo code for neutron and photon transport (version 3.1), 1983.

  19. Hubbell, J. H. and Seltzer, S. M.,Tables of x-ray mass attenuation coefficients and mass energy absorption coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 additional substances of dosimetric interest, Technical Report NISTIR 5632, NIST, Gaithersburg, MD 20899, 1995.

    Google Scholar 

  20. International Commission on Radiological Protection,Radionuclide transformations: energy and intensity of Emissions, ICRP Report No. 38, 1983.

  21. Rivard, M. J.,Refinements to the geometry factor used in the AAPM Task Group Report No. 43 necessary for brachytherapy dosimetry calculations, Med. Phys. 26: 2445–2450, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Williamson, J. F.,Comparison of measured and calculated dose rates in water near 125 I and 192 Ir seeds, Med. Phys. 18: 776–786, 1991.

    Article  CAS  PubMed  Google Scholar 

  23. Heintz, B. H., Wallace, R. E. and Hevezi, J. M.,Comparison of I-125 sources used for permanent interstitial implants, Med. Phys. 28(4): 671–682, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Anagnostopoulos, G., Baltas, D., Karaiskos, P., Sandilos, P., Papagiannis, P. and Sakelliou, L.,Thermoluminescent dosimetry of the SelectSeed 125 I interstitial brachytherapy seed, Med. Phys. 29(5): 709–715, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Karaiskos, P., Papagiannis, P., Sakelliou, L., Anagnostopoulos, G. and Baltas, D.,Monte Carlo dosimetry of SelectSeed 125 I interstitial brachytherapy seed, Med. Phys. 28(8): 1753–1760, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.D., Basu, M., Shanta, A. et al. Dosimetry parameters of BARC OcuProsta I-125 seed source. Australas. Phys. Eng. Sci. Med. 28, 14 (2005). https://doi.org/10.1007/BF03178859

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF03178859

Key words

Navigation