Skip to main content
Log in

Changes of ghrelin and brain natriuretic peptide levels in systemic vascular resistance after cardiopulmonary bypass

Cambios de los niveles de ghrelina y péptido natriurético B en la resistencia vascular sistémica tras circulación extracorporal

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The application of cardiopulmonary bypass (CPB) using a heart-lung machine in open heart surgery is associated with numerous pathophysiological changes in the vascular system and the neurohormonal environment. In this study our purpose was to investigate whether the hormones brain natriuretic peptide (BNP) and ghrelin are involved in changes in the systemic vascular resistance index (SVRI) after CPB, using data from 20 patients who had undergone coronary artery by pass grafting accompanied by CPB. Hemodynamic measurements were obtained using a thermodilution catheter and included cardiac index and systemic vascular resistance index. Blood samples were taken before CPB, after CPB, and at 0 and 24 h postoperatively. The blood levels of total and acylated ghrelin were quantified by radioimmunoassay. Blood levels of BNP were measured by a fluorescence immunoassay kit. The SVRI was significantly higher at the end of CPB and at 0 h postoperatively than before CPB (end of CPB: 4282±1035 dyne·s·cm−5·m−2, 0 h postoperatively: 3239±635 dyne·s·cm−5·m−2 vs. before CPB: 2289±330 dyne·s·cm−5·m−2, p<0.05). Total and acylated ghrelin levels decreased until 0 h postoperatively but the change was not statistically significant. However, at 24 h after surgery, they showed a statistically significant increase over the initial ghrelin values (total before CPB: 1413.71±287.93 pg/ml vs. 24 h postoperatively: 1736.85±236.89 pg/ml; acylated ghrelin before CPB: 55.85±25.53 pg/ml vs. 24 h postoperatively: 106.28±30.86 pg/ml; p<0.05 for both). BNP values were markedly lower after than before CPB (before CPB: 69.07±48 pg/ml vs. after CPB: 21.96±13 pg/ml, p<0.05) and reached a maximum value 24 h postoperatively (before CPB: 56.3±42 vs. after CPB: 454.7±229 pg/ml, p<0.05). There was a weak negative correlation between the changes in SVRI and total and acylated ghrelin levels after the CPB period, but this was not statistically significant. However, there was a statistically significant negative correlation between SVRI and BNP after CPB and at 24 h postoperatively (r:−0.709, p<0.01 and r:−0.649, p<0.03, respectively). Taken together, our results show that the observed initial increases in ghrelin and/or BNP in the postoperative period (at 24 h) might be causally related to the decrease in the SVRI in the same period. However, further investigations are needed to clarify the significance of this observation with respect to that of SVRI.

Resumen

Se investiga si las hormonas ghrelina y péptido natriurético B (BNP) están implicadas en los cambios del índice de resistencia vascular sistémica (SVRI) tras circulación extracorporal (CE). En 20 pacientes a los que se había practicado derivación aortocoronaria con circulación extracorporal, se relaizaron medidas hemodinámicas y determinaciones plasmáticas de ghrelina y BNP antes y después de la CE y 0h y 24h tras la operación. Los valores de SVRI fueron mayores tras CE y 0h tras la cirugía Los niveles de ghrelina y de BNP alcanzaron niveles máximos 24 h tras la cirugía. Los resultados sugieren que los incrementos de ghrelina y de BNP 24 h tras la cirugía podrían estar causalmente relacionados con la disminución de SVRI en el mismo período.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avidan, M.S., Meehan, N., Ponte, J., El-Gamel, A., Sherwood, R.A. (2001): Changes in brain natriuretic peptide concentrations following open cardiac surgery with cardioplegic cardac arrest. Clin Chim Acta, 303, 127–132.

    Article  CAS  PubMed  Google Scholar 

  2. Aydin, S. (2007): Discovery of ghrelin hormone, its researches and its clinical applications. Turkish J Biochem, 32, 76–89.

    Google Scholar 

  3. Broglio, F., Gottero, C., Prodam, F., Gauna, C., Muccioli, G., Papotti, M., Abribat, T., Van Der Lely, A.J., Ghigo, E. (2004): Non-acylated ghrelin counteracts the metabolic but not the endocrine response to acylated ghrelin in humans. J Clin Endocrinol Metab, 89, 3062–3065.

    Article  CAS  PubMed  Google Scholar 

  4. Cao, J.M., Ong, H., Chen, C. (2006): Effects of ghrelin and synthetic GH secretagogues on the cardiovascular system. Trends Endocrinol Metab, 17, 13–18.

    Article  CAS  PubMed  Google Scholar 

  5. Christakis, G.T., Fremes, S.E., Koch, JP, Harwood S, Juhasz S, Sharpe E, Deemar KA, Hamilton C, Chen E, Rao V. (1994): Determinats of low systemic vascular resistance during cardiopulmonary bypass. Ann Thorac Surg, 58, 1040–1049.

    Article  CAS  PubMed  Google Scholar 

  6. Gröschl, M., Uhr, M., Kraus, T. (2004): Evaluation of the comparability of commercial ghrelin assays. Clin Chem, 50, 457–458.

    Article  PubMed  Google Scholar 

  7. Hosada, H., Doi, K., Nagaya, N., (2004): Optimum collection and storage conditions for ghrelin measurements: octanoyl modification of ghrelin is rapidly hydrolyzed to deacyl ghrelin in blood samples. Clin Chem, 50, 1077–1080.

    Article  Google Scholar 

  8. Iglesias, M.J., Piñeiro, R., Blanco, M., Gallego, R., Diéguez, C., Gualillo, O., González-Juanatey, J.R., Lago, F. (2004): Growth hormone-releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes. Cardiovasc Res, 62, 481–488.

    Article  CAS  PubMed  Google Scholar 

  9. Kasimay, O., Iseri, S.O., Barlas, A., Bangir, D., Yegen, C., Arbak, S., Yegen, B.C. (2006): Ghrelin ameliorates pancreaticobiliary inflammation and associated remote organ injury in rats. Hepatol Res, 36, 11–19.

    Article  CAS  PubMed  Google Scholar 

  10. Kleinz, M.J., Maguire, J.J., Skepper, J.N. (2006): Functional and immunocytochemical evidence for a role ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc Res, 69, 227–235.

    Article  CAS  PubMed  Google Scholar 

  11. Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., Kangawa, K. (1999): Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656–660.

    Article  CAS  PubMed  Google Scholar 

  12. Kojima, M., Kangawa, K. (2005): Ghrelin: structure and function. Physiol Rev, 85, 495–522.

    Article  CAS  PubMed  Google Scholar 

  13. Lin, Y., Matsumura, K., Fukuhara, M., Kagiyama, S., Fujii, K., Iida, M. (2004): Ghrelin acts at the nucleus of the solitary tract to decrease arterial pressure in rats. Hypertension, 43, 977–982.

    Article  CAS  PubMed  Google Scholar 

  14. Louagie, Y.A.G., Jamart, J., Gonzales, M., (2004): Continuos cold cardioplegia improves myocardial protection: a prospective randomized study. Ann Thorac Surg, 77, 664–671.

    Article  PubMed  Google Scholar 

  15. Mair, P., Mair, J., Bleir, J. (1997): Augmented release of brain natriuretic peptide during reperfusion of the human heart after cardioplegic cardiac arrest. Clin Chim Acta, 261, 57–68.

    Article  CAS  PubMed  Google Scholar 

  16. Maisel, A.S., Krishnaswamy, P., Nowak, R.M., (2002): Breathing Not Properly Multinational Study Investigators. Rapid measurement of the B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med, 347, 161–167.

    Article  CAS  PubMed  Google Scholar 

  17. Morimoto, K., Mori, T., Ishiguro, S. (1998): Perioperative changes in plasma brain natriuretic peptide concentrations in patients undergoing cardiac surgery. Surg Today, 28, 23–29.

    Article  CAS  PubMed  Google Scholar 

  18. Morris, D.C., Clements, S.D. Jr., Bailey, J.M. (2004): Management of the patient after cardiac surgery. In: “The Heart” (Fuster, V., Alexander, R. W. and O’Rourke, R.A., eds.). McGraw Hill, New York, pp. 1509–1516.

    Google Scholar 

  19. Nagaya, N., Kojima, M., Uematsu, M. (2001b): Hemodynamic and hormonal effects of human ghrelin in healty volunteers. Am J Physiol Regul Integr Comp Physiol, 280, R1483-R1487.

    CAS  PubMed  Google Scholar 

  20. Nagaya, N., Miyatake, K., Uematsu, M., Oya, H., Shimizu, W., Hosoda, H., Kojima, M., Nakanishi, N., Mori, H., Kangawa, K. (2001a): Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. J Clin Endocrinol Metab, 86, 5854–5859.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura, K., Ueno, T., Yamamoto, H., (2005): Relationship between cerebral injury and inflammatory responses in patients undergoing cardiac surgey with cardiopulmonary bypass. Cytokine, 29, 95–104.

    Article  CAS  PubMed  Google Scholar 

  22. Ohata, T., Sawa, Y., Kadoba, K., Kagisaki, K., Suzuki, K., Matsuda, H. (2000): Role of nitrix oxide in atemparature dependent regulation of systemic vascular resistance in cardiopulmonary bypass. Eur J Cardiothorac Surg, 18, 342–347.

    Article  CAS  PubMed  Google Scholar 

  23. Palazzuoli, A., Carrera, A., Calabria, P., (2004): Brain natriuretic peptide levels during cardiac reperfusion: comparison between percutaneous coronary angioplasty and aorto-coronaric bypass. Clin Chim Acta, 342, 87–92.

    Article  CAS  PubMed  Google Scholar 

  24. Pemberton, C.J., Tokola, H., Bagi, Z. (2004): Ghrelin induces vasoconstriction in the rat coronary vasculature without altering without altering cardiac peptide secretion. Am J Physiol Heart Circ Physiol, 287, H1522-H1529.

    Article  CAS  PubMed  Google Scholar 

  25. Protter, A.A., Wallace, A.M., Ferraris, V.A., Weishaar, R.E. (1996): Relaxant effect of human brain natriuretic peptide on human artery and vein tissue. Am J Hypertens, 9, 432–436.

    Article  CAS  PubMed  Google Scholar 

  26. Rastan, A.J., Bittner, H.B., Gummert, J.F., (2005): On-pump beating heart versus off-pump coronary artery bypass surgery-evidence of pump-induced myocardial injury. Eur J Cardiothorac Surg, 27, 1057–1064.

    Article  PubMed  Google Scholar 

  27. Sehirli, O., Sener, E., Sener, G., (2008): Ghrelin improves burn-induced multiple organ injury by depressing neutrophil infiltration and the release of pro-inflammatory cytokines. Peptides, 29, 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu, Y., Nagaya, N., Teranishi, Y., Imazu, M., Yamamoto, H., Shokawa, T., Kangawa, K., Kohno, N., Yoshizumi, M. (2003): Ghrelin improves endothelial dysfunction through growth hormone-independent mechanism in rats. Biochem Biophys Res Commun, 310, 830–835.

    Article  CAS  PubMed  Google Scholar 

  29. Stein, B.C., Levin, R.I. (1998): Natriuretic peptides: physiology, therapeutic potential, and risk stratification in ischemic heart disease. Am Heart J, 135, 914–923.

    Article  CAS  PubMed  Google Scholar 

  30. Thomson, N.M., Gill, D.A., Davies, R., Loveridge, N., Houston, P.A., Robinson, I.C., Wells, T. (2004): Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of type 1a growth hormone secretagogue receptor. Endocrinology, 145, 234–242.

    Article  Google Scholar 

  31. Van der Zander, K., Houben, A.J., Kroon, A.A., De Mey, J.G., Smits, P.A., de Leeuw, P.W. (2002): Nitric oxide and potassium channels are involved in brain natriuretic peptide induced vasodilatation in man. J Hypertens, 20, 493–439.

    Article  PubMed  Google Scholar 

  32. Wiley, K., Davenport, A. (2002): Comparision of vasodilators in human internal mammary artery. Ghrelin is a potent physiological antagonist of endothelin-1. Br J Pharmacol, 136, 1146–1152.

    Article  CAS  PubMed  Google Scholar 

  33. Yasue, H., Yoshimura, M. (1996): Natriuretic peptides in the treatment of heart failure. J Card Fail, 2, S277-S285.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aydin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, A., Aydin, S., Bayar, M.K. et al. Changes of ghrelin and brain natriuretic peptide levels in systemic vascular resistance after cardiopulmonary bypass. J. Physiol. Biochem. 64, 221–230 (2008). https://doi.org/10.1007/BF03178845

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178845

Keywords

Palabras clave

Navigation