Skip to main content
Log in

An MCNP-based model of a medical linear accelerator x-ray photon beam

  • Technical Note
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300EX medical linear accelerator were modeled and simulated using the Monte CarloN-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Townley, J., Variation of peak scatter with energy. An investigation using MCNP4A, MSc Thesis Birmingham University, 1996.

  2. Briesmeister, J. F., MCNP-a general Monte Carlo code for neutron and photon transport, Los Alamos National Laboratory Report LA 7396-M: 1997.

  3. Mohan, R., Chui, C., and Lidofsky, L., Energy and angular distributions of photons from medical linear accelerators, Medical Physics, 2: 592–7, 1985.

    Article  Google Scholar 

  4. Desobry, G. E. and Boyer, A. L., An analytic calculation of the energy fluence spectrum of a linear accelerators, Medical Physics, 21: 1943–52, 1994.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, P. C., Monte Carlo simulations of the differential beam hardening effect of a flattening filter on a therapeutic x-ray beam, Medical Physics, 24: 1485–9, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. DeMarco, J. J., Solberg, D. T., Smathers, J. B., A CT-based Monte Carlo simulation tool for dosimetry planning and analysis, Medical Physics, 25: 1–11, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Lewis, R.. D., Ryde, S. J. S., Hancook, D. A., Evans, C. J., An MCNP — based model of a linear accelerator x-ray beam, Physics in Medicine and Biology, 44: 1219–30, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Rogers, D. W. O. and Bielajew, A. F., Monte Carlo techniques of Electron and Photon transport for Radiation Dosimetry. The Dosimetry of Ionizing Radiation vol III, K. Kase, B. Bjarngard and F. H. attix (New York: Academic): 427–539, 1990.

    Google Scholar 

  9. Udale-Smith, M., Monte Carlo calculations of electron beam parameters for three Philips linear accelerators, Physics in Medicine and Biology, 37: 85–105, 1992.

    Article  Google Scholar 

  10. Rogers, D. W. O., Faddegon, B. A., Ding, D. X., Ma, C. M., We, J, Mackie, T. R., BEAM: A Monte Carlo code to simulate radiotherapy treatment unit, Medical Physics, 22: 503–24, 1995.

    Article  CAS  PubMed  Google Scholar 

  11. Ahnesjö, A., Andreo, P., Determination of effective Bremsstrahlung spectra and electron contamination for photon dose calculations, Physics in Medicine and Biology, 34: 1451–64, 1989.

    Article  PubMed  Google Scholar 

  12. Huang, P. H., Kase, K. R., Bjärngard, B. E., Simulation studies of 4 MV x-ray spectral reconstruction by numerical analysis of transmission data, Medical Physics, 9: 695–702, 1982.

    Article  CAS  PubMed  Google Scholar 

  13. Francois, P., Catala A., Scouarnec C., Simulation of x-ray spectral reconstruction from transmission data by direct resolution of the numeric system AF=T, Medical Physics, 20: 1695–703, 1993.

    Article  CAS  PubMed  Google Scholar 

  14. Baker, C. R., Peck, K. K., Reconstruction of 6 MV from photon spectra from measured transmission including maximum energy estimation, Physics in Medicine and Biology, 42: 2041–51, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Brownridge, J., Sammick, S., Stiles, P., Tipton, P., Veselka, J., Yeh, N., Determination of the photon spectrum of a clinical accelerator, Medical Physics, 11: 794–6, 1984.

    Article  CAS  PubMed  Google Scholar 

  16. Schiff, L. I., Energy-angle distribution of thin target Bremsstrahlung, Physical Review, 83: 252–3, 1951.

    Article  Google Scholar 

  17. Huang, P. H., Kase, K. R., Bjärngard, B. E., Reconstruction of 4 MV spectra from measured transmission data, Medical Physics, 10: 777–85, 1983.

    Google Scholar 

  18. Harrison, R. M., Locks, S. M., Quantitative assessment of the image quality of portal imaging systems, Proceedings of the 19th L H Gray Conference: Quantitative imaging in oncology ed K. Faulkner et al (London: British Institute of Radiology): 106–10, 1996.

    Google Scholar 

  19. Love, P. A., Lewis, D. G., Al-Affan, I. A. M., Smith, C. W., Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth-doses, Physics in Medicine and Biology, 43 (5): 1351–1357, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Hendricks, J. S., MCNP-4B LANL Memorandom (Los Alamos, NM: Los Alamos National Laboratory), 1997.

    Google Scholar 

  21. LaRiviere, P. D., The quality of high-energy x-ray beams, British journal of Radiology, 62: 473–81, 1989.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. A. Ajaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajaj, F.A.A., Ghassal, N.M.H. An MCNP-based model of a medical linear accelerator x-ray photon beam. Australas. Phys. Eng. Sci. Med. 26, 140–144 (2003). https://doi.org/10.1007/BF03178784

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178784

Key words

Navigation