Skip to main content

Advertisement

Log in

A Review of intensity modulated radiation therapy: Incorporating a report on the seventh education workshop of the ACPSEM — ACT/NSW branch

  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Intensity modulated radiation therapy (IMRT) is an evolving treatment technique that has become a clinical treatment option in several radiotherapy centres around the world. In August 2001 the ACT/NSW branch of the ACPSEM held its seventh education workshop, the subject was IMRT. This review considers the current use of IMRT and reports on the proceedings of the workshop. The workshop provided some of the theory behind IMRT, discussion of the practical issues associated with IMRT, and also involved presentations from Australian centres that had clinically implemented IMRT. The main topics of discussion were patient selection, plan assessment, multi-disciplinary approach, quality assurance and delivery of IMRT. Key points that were emphasised were the need for a balanced multi-disciplinary approach to IMRT, in both the establishment and maintenance of an IMRT program; the importance of the accuracy of the final dose distribution as compared to the minor in-field fluctuations of individual beams; and that IMRT is an emerging treatment technique, undergoing continuing development and refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burman, C., Chui, C. S., Kutcher, G., Leibel, S., Zelefsky, M., LoSasso, T., Spirou, S., Wu, Q., Yang, J., Stein, J., Mohan, R., Fuks, Z. and Ling, C. C.Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 39(4): 863–73 1997.

    CAS  PubMed  Google Scholar 

  2. Klein, E. E., Low, D. A., Sohn, J. W. and Purdy, J. A.Differential dosing of prostate and seminal vesicles using dynamic multileaf collimation [In Process Citation]. Int J Radiat Oncol Biol Phys 48(5): 1447–56 2000.

    CAS  PubMed  Google Scholar 

  3. Teh, B. S., Mai, W., Uhl, B. M., Augspurger, M. E., Grant, W. H., Lu, H. H., Woo, S. Y., Carpenter, L. S., Chiu, J. K. and Butler, E. B.Intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of a rectal balloon for prostate immobilization: acute toxicity and dose-volume analysis. Int J Radiat Oncol Biol Phys 49(3): 705–712. 2001.

    CAS  PubMed  Google Scholar 

  4. Cheng, J. C., Chao, K. S. and Low, D.Comparison of intensity modulated radiation therapy (IMRT) treatment techniques for nasopharyngeal carcinoma. Int J Cancer 96(2): 126–31. 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Zelefsky, M. J., Fuks, Z., Happersett, L., Lee, H. J., Ling, C. C., Burman, C. M., Hunt, M., Wolfe, T., Venkatraman, E. S., Jackson, A., Skwarchuk, M. and Leibel, S. A.Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 55(3): 241–9. 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Tubiana, M. and Eschwege, F.Conformal radiotherapy and intensity-modulated radiotherapy-clinical data. Acta Oncol 39(5): 555–67. 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Shu, H. K., Lee, T. T., Vigneauly, E., Xia, P., Pickett, B., Phillips, T. L. and Roach, M.Toxicity following high-dose three-dimensional conformal and intensity-modulated radiation therapy for clinically localized prostate cancer. Urology 57(1): 102–7.2001.

    Article  CAS  PubMed  Google Scholar 

  8. Sorensen, N. E.A simple method for the construction of compensators of ‘missing tissue’. Phys Med Biol 13(1): 113–5. 1968.

    Article  CAS  PubMed  Google Scholar 

  9. Ellis, F., Hall, E. J. and Oliver, R.A compensator for variations in tissue thickness for high energy beams. Br. J. Radiol. 32: 421–422 1959.

    Article  CAS  PubMed  Google Scholar 

  10. Van der Laarse, R. and Strackee, J.Pseudo optimization of radiotherapy treatment planning. Br J Radiol 49(581): 450–7. 1976.

    Article  PubMed  Google Scholar 

  11. Bjarngard, B. E.Optimization in radiation therapy. Int J Radiat Oncol Biol Phys 2(3–4): 381–2. 1977.

    CAS  PubMed  Google Scholar 

  12. Cooper, R. E.A gradient method of optimizing external-beam radiotherapy treatment plans. Radiology 128(1): 235–43. 1978.

    CAS  PubMed  Google Scholar 

  13. Redpath, A. T. and Wright, D. H.Optimization procedures for computerised therapy planning. Strahlentherapie [Sonderb] 77: 54–9. 1981.

    CAS  Google Scholar 

  14. Legras, J., Legras, B. and Lambert, J. P.Software for linear and non-linear optimization in external radiotherapy. Comput Programs Biomed 15(3): 233–42. 1982.

    Article  CAS  PubMed  Google Scholar 

  15. Starkschall, G.A constrained least-squares optimization method for external beam radiation therapy treatment planning. Med Phys 11(5): 659–65. 1984.

    Article  CAS  PubMed  Google Scholar 

  16. Brahme, A., Roos, J. E. and Lax, I.Solution of an integral equation encountered in rotation therapy. Phys Med Biol 27(10): 1221–9. 1982.

    Article  CAS  PubMed  Google Scholar 

  17. Brahme, A.Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 12(2): 129–40. 1988.

    Article  CAS  PubMed  Google Scholar 

  18. Brahme, A.Design principles and clinical possibilities with a new generation of radiation therapy equipment. A review. Acta Oncol 26(6): 403–12. 1987.

    Article  CAS  PubMed  Google Scholar 

  19. Kallman, P. Lind, B., Eklof, A. and Brahme, A.Shaping of arbitrary dose distributions by dynamic multileaf collimation. Phys Med Biol 33(11): 1291–300. 1988.

    Article  CAS  PubMed  Google Scholar 

  20. Convery, D. J. and Rosenbloom, M. E.The generation of intensity-modulated fields for conformal radiotherapy by dynamic collimation. Physics in Medicine and Biology 37(6): 1359–1374 1992.

    Article  Google Scholar 

  21. Svensson, R., Kallman, P. and Brahme, A.An analytical solution for the dynamic control of multileaf collimators. Phys Med Biol 39(1): 37–61. 1994.

    Article  CAS  PubMed  Google Scholar 

  22. Galvin, J. M., Chen, X. G. and Smith, R. M.Combining multileaf fields to modulate fluence distributions. Int J Radiat Oncol Biol Phys 27(3): 697–705. 1993.

    CAS  PubMed  Google Scholar 

  23. Bortfeld, T. R., Kahler, D. L., Waldron, T. J. and Boyer, A. L.X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 28(3): 723–30. 1994.

    CAS  PubMed  Google Scholar 

  24. Mackie, T. R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J. O., Yang, J., Paliwal, B. and Kinsella, T.Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20(6): 1709–19. 1993.

    Article  CAS  PubMed  Google Scholar 

  25. Ma, L., Boyer, A. L., Xing, L. and Ma, M.An optimized leaf-setting algorithm for beam intensity modulation using dynamic multileaf collimators. Phys Med Biol 43(6): 1629–43. 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Xia, P. and Verhey, L. J.Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Med Phys 25(8): 1424–34. 1998.

    Article  CAS  PubMed  Google Scholar 

  27. Webb, S.Configuration options for intensity-modulated radiation therapy using multiple static fields shaped by a multileaf collimator. Phys Med Biol 43(2): 241–60. 1998.

    Article  CAS  PubMed  Google Scholar 

  28. Bortfeld, T.Optimized planning using physical objectives and constraints. Semin Radiat Oncol 9(1): 20–34. 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Siochi, R. A.Virtual micro-intensity modulated radiation therapy. Med Phys 27(11): 2480–93. 2000.

    Article  PubMed  Google Scholar 

  30. Siochi, R. A.Minimizing static intensity modulation delivery time using an intensity solid paradigm. Int J Radiat Oncol Biol Phys 43(3): 671–80. 1999.

    CAS  PubMed  Google Scholar 

  31. Evans, P. M. and Partridge, M.A method of improving the spatial resolution of treatments that involve a multileaf collimator. Phys Med Biol 45(3): 609–22. 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Cho, P. S. and Marks, R. J. 2nd.Hardware-sensitive optimization for intensity modulated radiotherapy. Phys Med Biol 45(2): 429–40. 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Pugachev, A. B., Boyer, A. L. and Xing, L.Beam orientation optimization in intensity-modulated radiation treatment planning. Med Phys 27(6): 1238–45. 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, Q. and Mohan, R.Algorithms and functionality of an intensity modulated radiotherapy optimization system. Med Phys 27(4): 701–11. 2000.

    Article  CAS  PubMed  Google Scholar 

  35. Xia, P. and Verhey, L. J.Delivery systems of intensity-modulated radiotherapy using conventional multileaf collimators. Med Dosim 26(2): 169–77. 2001.

    Article  CAS  PubMed  Google Scholar 

  36. Chui, C. S. and Spirou, S. V.Inverse planning algorithms for external beam radiation therapy. Med Dosim 26(2): 189–97. 2001.

    Article  CAS  PubMed  Google Scholar 

  37. Fraass, B. A., Kessler, M. L., McShan, D. L., Marsh, L. H., Watson, B. A., Dusseau, W. J., Eisbruch, A., Sandler, H. M. and Lichter, A. S.Optimization and clinical use of multisegment intensity-modulated radiation therapy for high-dose conformal therapy. Semin Radiat Oncol 9(1): 60–77. 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Kuppersmith, R. B., Greco, S. C., Teh, B. S., Donovan, D. T., Grant, W., Chiu, J. K., Cain, R. B. and Butler, E. B.Intensity-modulated radiotherapy: first results with this new technology on neoplasms of the head and neck. Ear Nose Throat J 78(4): 238,241–6,248 passim. 1999.

    Google Scholar 

  39. Reinstein, L. E., Wang, X. H., Burman, C. M., Chen, Z., Mohan, R., Kutcher, G., Leibel, S. A. and Fuks, Z.A feasibility study of automated inverse treatment planning for cancer of the prostate. Int J Radiat Oncol Biol Phys 40(1): 207–14. 1998.

    Article  CAS  PubMed  Google Scholar 

  40. Wu, Q., Manning, M., Schmidt-Ullrich, R. and Mohan, R.The potential for sparing of parotids and escalation of biologically effective dose with intensity-modulated radiation treatments of head and neck cancers: a treatment design study. Int J Radiat Oncol Biol Phys 46(1): 195–205. 2000.

    Article  CAS  PubMed  Google Scholar 

  41. Dawson, L. A., Anzai, Y., Marsh, L., Martel, M. K., Paulino, A., Ship, J. A. and Eisbruch, A.Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 46(5): 1117–26. 2000.

    CAS  PubMed  Google Scholar 

  42. Nutting, C. M., Convery, D. J., Cosgrove, V. P., Rowbottom, C., Vini, L., Harmer, C., Dearnaley, D. P. and Webb, S.Improvements in target coverage and reduced spinal cord irradiation using intensity-modulated radiotherapy (IMRT) in patients with carcinoma of the thyroid gland. Radiother Oncol 60(2): 173–80. 2001.

    Article  CAS  PubMed  Google Scholar 

  43. Nutting, C. M., Bedford, J. L., Cosgrove, V. P., Tait, D. M., Dearnaley, D. P. and Webb, S.A comparison of conformal and intensity-modulated techniques for oesophageal radiotherapy. Radiother Oncol 61(2): 157–63. 2001.

    Article  CAS  PubMed  Google Scholar 

  44. Eisbruch, A., Marsh, L. H., Martel, M. K., Ship, J. A., Ten Haken, R., Pu, A. T., Fraass, B. A. and Lichter, A. S.Comprehensive irradiation of head and neck cancer using conformal multisegmental fields: assessment of target coverage and noninvolved tissue sparing. Int J Radiat Oncol Biol Phys 41(3): 559–68. 1998.

    Article  CAS  PubMed  Google Scholar 

  45. Emami, B., Lyman, J., Brown, A., Coia, L., Goitein, M., Munzenrider, J. E., Shank, B., Solin, L. J. and Wesson, M.Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1): 109–22. 1991.

    CAS  PubMed  Google Scholar 

  46. Melian, E., Mageras, G. S., Fuks, Z., Leibel, S. A., Niehaus, A., Lorant, H., Zelefsky, M., Baldwin, B. and Kutcher, G. J.Variation in prostate position quantitation and implications for three-dimensional conformal treatment planning. Int J Radiat Oncol Biol Phys 38(1): 73–81. 1997.

    CAS  PubMed  Google Scholar 

  47. Vigneault, E., Pouliot, J., Laverdiere, J., Roy, J. and Dorion, M.Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: a clinical study. Int J Radiat Oncol Biol Phys 37(1): 205–12. 1997.

    CAS  PubMed  Google Scholar 

  48. Beard, C. J., Kijewski, P., Bussiere, M., Gelman, R., Gladstone, D., Shaffer, K., Plunkett, M., Castello, P. and Coleman, C. N.Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys 34(2): 451–8. 1996.

    CAS  PubMed  Google Scholar 

  49. M. van Herk, Bruce, A., Kroes, A. P., Shouman, T., Touw, A. and Lebesque, J. V.Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. Int J Radiat Oncol Biol Phys 33(5): 1311–20 1995.

    PubMed  Google Scholar 

  50. International Commission on Radiation Units and Measurements (ICRU). ICRU Report 50:Prescribing, Recording and Reporting Photon Beam Therapy. Maryland, USA, 1993.

  51. International Commission on Radiation Units and Measurements (ICRU). ICRU Report 62:Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). Maryland, USA, 1999.

  52. Kantorowitz, D. A.The impact of dose-specification policies upon nominal radiation dose received by breast tissue in the conservation treatment of breast cancer. Int J Radiat Oncol Biol Phys 47(3): 841–8. 2000.

    Article  CAS  PubMed  Google Scholar 

  53. Intensity Modulated Radiation Therapy Collaborative Working Group.Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51(4): 880–914. 2001.

    Google Scholar 

  54. Pirzkall, A., Carol, M., Lohr, F., Hoss, A., Wannenmacher, M. and Debus, J.Comparison of intensity-modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors. Int J Radiat Oncol Biol Phys 48(5): 1371–80. 2000.

    CAS  PubMed  Google Scholar 

  55. Low, D. A., Mutic, S., Dempsey, J. F., Gerber, R. L., Bosch, W. R., Perez, C. A. and Purdy, J. A.Quantitative dosimetric verification of an IMRT planning and delivery system. Radiother Oncol 49(3): 305–16. 1998.

    Article  CAS  PubMed  Google Scholar 

  56. Purdy, J. A. and Harms, W. B.Quality assurance for 3D conformal radiation therapy. Strahlenther Onkol 174 Suppl 2: 2–7. 1998.

    PubMed  Google Scholar 

  57. Tsai, J. S., Wazer, D. E., Ling, M. N., Wu, J. K., Fagundes, M., DiPetrillo, T., Kramer, B., Koistinen, M. and Engler, M. J.Dosimetric verification of the dynamic intensity-modulated radiation therapy of 92 patients. Int J Radiat Oncol Biol Phys 40(5): 1213–30. 1998.

    CAS  PubMed  Google Scholar 

  58. Budgell, G. J., Mott, J. H., Williams, P. C. and Brown, K. J.Requirements for leaf position accuracy for dynamic multileaf collimation. Phys Med Biol 45(5): 1211–27. 2000.

    Article  CAS  PubMed  Google Scholar 

  59. Xing, L. and Li, J. G.Computer verification of fluence map for intensity modulated radiation therapy. Med Phys 27(9): 2084–92. 2000.

    Article  CAS  PubMed  Google Scholar 

  60. Papatheodorou, S., Rosenwald, J. C., Zefkili, S., Murillo, M. C., Drouard, J. and Gaboriaud, G.Dose calculation and verification of intensity modulation generated by dynamic multileaf collimators. Med Phys 27(5): 960–71. 2000.

    Article  CAS  PubMed  Google Scholar 

  61. Saw, C. B., Ayyangar, K. M., Zhen, W., Thompson, R. B. and Enke, C. A.Quality assurance procedures for the Peacock system. Med Dosim 26(1): 83–90. 2001.

    Article  CAS  PubMed  Google Scholar 

  62. Saw, C. B., Ayyangar, K. M., Zhen, W., Thompson, R. B. and Enke, C. A.Commissioning and quality assurance for MLC-based IMRT. Med Dosim 26(2): 125–33. 2001.

    Article  CAS  PubMed  Google Scholar 

  63. Ameriacn Association of Physicists in Medicine (AAPM). AAPM Report 62:Quality Assurance for Clinical Radiotherapy Treatment Planning. College Park, MD, 1998.

  64. Takahashi, S.Conformation radiotherapy. Rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol Diagn (Stockh): Suppl(242): 1+. 1965.

    Google Scholar 

  65. Mac Manus, M. P., Hicks, R. J., Ball, D. L., Kalff, V., Matthews, J. P., Salminen, E., Khaw, P., Wirth, A., Rischin, D. and McKenzie, A.F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 92(4): 886–95. 2001.

    Article  CAS  PubMed  Google Scholar 

  66. Munley, M. T., Marks, L. B., Scarfone, C., Sibley, G. S., Patz, E. F., Jr., Turkington, T. G., Jaszczak, R. J., Gilland, D. R., Anscher M. S. and Coleman, R. E.Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23(2): 105–14. 1999.

    Article  CAS  PubMed  Google Scholar 

  67. Ling, C. C., Humm, J., Larson, S., Amols, H., Fuks, Z., Leibel, S. and Koutcher, J. A.Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47(3): 551–60. 2000.

    Article  CAS  PubMed  Google Scholar 

  68. Lattanzi, J., McNeeley, S., Pinover, W., Horwitz, E., Das, I., Schultheiss, T. E. and Hanks, G. E.A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer [see comments]. Int J Radiat Oncol Biol Phys 43(4): 719–25 1999.

    CAS  PubMed  Google Scholar 

  69. Mohan, D. S., Kupelian, P. A. and Willoughby, T. R.Short-course intensity-modulated radiotherapy for localized prostate cancer with daily transabdominal ultrasound localization of the prostate gland. Int J Radiat Oncol Biol Phys 46(3): 575–80. 2000.

    CAS  PubMed  Google Scholar 

  70. Nederveen, A., Lagendijk, J. and Hofman, P.Detection of fiducial gold markers for automatic on-line megavoltage position verification using a marker extraction kernel (MEK). Int J Radiat Oncol Biol Phys 47(5): 1435–42. 2000.

    CAS  PubMed  Google Scholar 

  71. Nederveen, A. J., Lagendijk, J. J. and Hofman, P.Feasibility of automatic marker detection with an a-Si flat-panel imager. Phys Med Biol 46(4): 1219–30. 2001.

    Article  CAS  PubMed  Google Scholar 

  72. Jaffray, D. A., Chawla, K., Yu, C. and Wong, J. W.Dual-beam imaging for online verification of radiotherapy field placement. Int J Radiat Oncol Biol Phys 33(5): 1273–80. 1995.

    CAS  PubMed  Google Scholar 

  73. Ichikawa, K., Kumazaki, T., Hayashi, H. and Ochi, M.Assessment of abdominal aortic aneurysms using a cone-beam CT system: an experimental phantom study and an initial clinical evaluation before and after stent-graft treatment in patients with an abdominal aortic aneurysm. J Nippon Med Sch 68(6): 498–509. 2001.

    Article  CAS  PubMed  Google Scholar 

  74. Liu, Y., Liu, H., Wang, Y. and Wang, G.Half-scan cone-beam CT fluoroscopy with multiple x-ray sources. Med Phys 28(7): 1466–71. 2001.

    Article  CAS  PubMed  Google Scholar 

  75. Mosleh-Shirazi, M. A., Evans, P. M., Swindell, W., Webb, S. and Partridge, M.A cone-beam megavoltage CT scanner for treatment verification in conformal radiotherapy. Radiother Oncol 48(3): 319–28. 1998.

    Article  CAS  PubMed  Google Scholar 

  76. Siewerdsen, J. H. and Jaffray, D. A.Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys 28(2): 220–31. 2001.

    Article  CAS  PubMed  Google Scholar 

  77. Meeks, S. L., Bova, F. J., Wagner, T. H., Buatti, J. M., Friedman, W. A. and Foote, K. D.Image localization for frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 46(5): 1291–9. 2000.

    CAS  PubMed  Google Scholar 

  78. Wang, T. L., Solberg, T. D., Medin, P. M. and Boone, R.Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med 31(2): 101–11. 2001.

    Article  CAS  PubMed  Google Scholar 

  79. Keall, P. J., Kini, V. R., Vedam, S. S. and Mohan, R.Motion adaptive x-ray therapy: a feasibility study. Phys Med Biol 46(1): 1–10. 2001.

    Article  CAS  PubMed  Google Scholar 

  80. Vedam, S. S., Keall, P. J., Kini, V. R. and Mohan, R.Determining parameters for respiration-gated radiotherapy. Med Phys 28(10): 2139–46. 2001.

    Article  CAS  PubMed  Google Scholar 

  81. Ramsey, C. R., Scaperoth, D., Arwood, D. and Oliver, A. L.Clinical efficacy of respiratory gated conformal radiation therapy. Med Dosim 24(2): 115–9. 1999.

    Article  CAS  PubMed  Google Scholar 

  82. Niemierko, A.Random search algorithm (RONSC) for optimization of radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 23(1): 89–98. 1992.

    CAS  PubMed  Google Scholar 

  83. Niemierko, A., Urie, M. and Goitein, M.Optimization of 3D radiation therapy with both physical and biological end points and constraints. Int J Radiat Oncol Biol Phys 23(1): 99–108. 1992.

    CAS  PubMed  Google Scholar 

  84. Sodertrom, S. and Brahme, A.Optimization of the dose delivery in a few field techniques using radiobiological objective functions. Med Phys 20(4): 1201–10. 1993.

    Article  CAS  PubMed  Google Scholar 

  85. Bortfeld, T., Schlegel, W., Dykstra, C., Levegrun, S. and Preiser, K.Physical vs. biological objectives for treatment plan optimization. Radiother Oncol 40(2): 185–7. 1996.

    Article  CAS  PubMed  Google Scholar 

  86. Brahme, A., Nilsson, J. and Belkic, D.Biologically optimized radiation therapy. Acta Oncol 40(6): 725–34. 2001.

    Article  CAS  PubMed  Google Scholar 

  87. Brahme, A.Biologically based treatment planning. Acta Oncol 38(Suppl 13): 61–8. 1999.

    Article  PubMed  Google Scholar 

  88. Brenner, D. J. and Hall, E. J.Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 43(5): 1095–101. 1999.

    Article  CAS  PubMed  Google Scholar 

  89. Fowler, J., Chappell, R. and Ritter, M.Is alpha/beta for prostate tumors really low? Int J Radiat Oncol Biol Phys 50(4): 1021–31. 2001.

    Article  CAS  PubMed  Google Scholar 

  90. King, C. R. and Fowler, J. F.A simple analytic derivation suggests that prostate cancer alpha/beta ratio is low. Int J Radiat Oncol Biol Phys 51(1): 213–4. 2001.

    CAS  PubMed  Google Scholar 

  91. Kupelian, P. A., Reddy, C. A., Klein, E. A. and Willoughby, T. R.Short-course intensity-modulated radiotherapy (70 GY at 2.5 GY per fraction) for localized prostate cancer: preliminary results on late toxicity and quality of life. Int J Radiat Oncol Biol Phys 51(4): 988–93. 2001.

    CAS  PubMed  Google Scholar 

  92. Kupelian, P. A. and Willoughby, T. R.Short-course, intensity-modulated radiotherapy for localized prostate cancer. Cancer J 7(5): 421–6. 2001.

    CAS  PubMed  Google Scholar 

  93. Lawrence, J. H.Proton irradiation of the pituitary. Cancer 10: 795 1957.

    Article  CAS  PubMed  Google Scholar 

  94. Lee, M., Wynne, C., Webb, S., Nahum, A. E. and Dearnaley, D.A comparison of proton and megavoltage X-ray treatment planning for prostate cancer. Radiother Oncol 33(3): 239–53. 1994.

    Article  CAS  PubMed  Google Scholar 

  95. Lomax, A. J., Bortfeld, T., Goitein, G., Debus, J., Dykstra, C., Tercier, P. A., Coucke, P. A. and Mirimanoff, R. O.A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy. Radiother Oncol 51(3): 257–71. 1999.

    Article  CAS  PubMed  Google Scholar 

  96. Zurlo, A., Lomax, A., Hoess, A., Bortfeld, T., Russo, M., Goitein, G., Valentini, V., Marucci, L., Capparella, R. and Loasses, A.The role of proton therapy in the treatment of large irradiation volumes: a comparative planning study of pancreatic and biliary tumors. Int J Radiat Oncol Biol Phys 48(1): 277–88. 2000.

    Article  CAS  PubMed  Google Scholar 

  97. Cozzi, L., Fogliata, A., Lomax, A. and Bolsi, A.A treatment planning comparison of 3D conformal therapy, intensity modulated photon therapy and proton therapy for treatment of advanced head and neck tumours. Radiother Oncol 61(3): 287–97. 2001.

    Article  CAS  PubMed  Google Scholar 

  98. Kapatoes, J. M., Olivera, G. H., Ruchala, K. J., Smilowitz, J. B., Reckwerdt, P. J. and Mackie, T. R.A feasible method for clinical delivery verification and dose reconstruction in tomotherapy. Med Phys 28(4): 528–42. 2001.

    Article  CAS  PubMed  Google Scholar 

  99. Mackie, T. R., Balog, J., Ruchala, K., Shepard, D., Aldridge, S., Fitchard, E., Reckwerdt, P., Olivera, G., McNutt, T. and Mehta, M.Tomotherapy. Semin Radiat Oncol 9(1): 108–17. 1999.

    Article  CAS  PubMed  Google Scholar 

  100. Ruchala, K. J., Olivera, G. H., Kapatoes, J. M., Schloesser, E. A., Reckwerdt, P. J. and Mackie, T. R.Megavoltage CT image reconstruction during tomotherapy treatments. Phys Med Biol 45(12): 3545–62. 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M. A Review of intensity modulated radiation therapy: Incorporating a report on the seventh education workshop of the ACPSEM — ACT/NSW branch. Australas. Phys. Eng. Sci. Med. 25, 91–101 (2002). https://doi.org/10.1007/BF03178769

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178769

Key words

Navigation