Skip to main content
Log in

Accuracy of an electromagnetic tracking device for measuring hip joint kinematics during gait: effects of metallic total hip replacement prosthesis, source-sensor distance and sensor orientation

  • Technical Report
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The present study sought to investigate the effects of source-sensor distance, sensor orientation and the effects of metallic total hip replacement (THR) prostheses on the accuracy of the 3Space Tracker System (3STS). Using a simulated hip joint, the angles measured by the 3STS with six different source-sensor distances and two source-sensor orientations were recorded. Then the angles measured in the absence and presence of three different THR prostheses were compared. Both source-sensor distance and sensor orientation affects the accuracy of the 3STS. Measurements were only affected by the presence of one type of prosthesis. The 3STS was equally reliable, but less accurate with source-sensor distances of more than 25 cm. The small angular error and insensitivity of this device to the presence of some metallic THR prostheses make it a useful measurement tool for gait studies performed before and after THR surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittle, M. W.,Gait analysis: an introduction, 3rd ed., Butterworth-Heinemann, Boston, 110–111, 2002.

    Google Scholar 

  2. An, K. N., Jacobsen, M. C., Berglund, L. J. and Chao, E. Y. S.,Application of a magnetic tracking device to kinesiologic Studies, J. Biomech., 27:613–620, 1988.

    Article  Google Scholar 

  3. Itoi, E., Motzkin, N. E., Morrey, B. F. and An, K. N.,Scapular inclination and inferior stability of the shoulder, J. Shoulder Elb. Surg., 1:131–139,1992.

    Article  Google Scholar 

  4. Imaeda, T., Niebur, G., An, K. N. and Cooney, W. P.,Kinematics of the trapeziometacarpal joint after sectioning of the ligaments, J. Orthopaed. Res., 12:205–210, 1994.

    Article  CAS  Google Scholar 

  5. McGill, S. M., Cholewicki, J. and Peach, J. P.,Methodological considerations for using inductive sensors (3Space Isotrak) to monitor 3-D orthopaedic joint motion, Clin. Biomech., 12:190–194, 1997.

    Article  Google Scholar 

  6. Sidles, J. A., Larson, R. V., Garbini, J. L., Downey, D. J. and Matsen, F. A.,Ligament length relationships in the moving Knee, J. Orthopaed. Res., 6:593–610,1988.

    Article  CAS  Google Scholar 

  7. An, K. N., Browne, A. O., Korinek, S., Tanaka, S. and Morrey, B. F.,Three-dimensional kinematics of glenohumeral Elevation, J. Orthopaed. Res., 9:143–149, 1991.

    Article  CAS  Google Scholar 

  8. Zoghi, M., Hefzy, M. S., Fu, K. C. and Jakson, W. T.,A threedimensional morphometrical study of the distal human femur, J. Eng. Med., 206:147–157, 1992.

    Article  CAS  Google Scholar 

  9. McKellop, H., Hoffman, R., Sarmiento, A., Bin, L. U. and Ebramzadeh, E.,Control of motion of tibial fractures with use of a functional brace or external fixator, J. Bone Joint Surg., 75A:1019–1025, 1993.

    Google Scholar 

  10. Milne, A. D., Chess, D. G., Johnson, J. A. and King, G. J. W.,Accuracy of an electromagnetic tracking device: A study of the optimal operating range and metal interference, J. Biomech., 29:791–783, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. An, K. N., Browne, A. O., Korinek, S., Tanaka, S. and Morrey, B. F.,Three-dimensional kinematics of glenohumeral elevation, J. Orthopaed. Res., 9:143–149, 1991.

    Article  CAS  Google Scholar 

  12. Pearcy, M. J. and Hindle, R. J.,New method for the noninvasive three-dimensional measurement of human back movement, Clin. Biomech., 4:73–79, 1989.

    Article  Google Scholar 

  13. Johnson, G. R. and Anderson, J. M.,Measurement of threedimensional shoulder movement by an electromagnetic sensor, Clin. Biomech., 5:131–136, 1990.

    Article  Google Scholar 

  14. Buchalter, D., Parnianpour, M., Viola, K., Nordin, M. and Karnovitz, N.,Three-dimensional spinal motion measurements. Part 1: A technique for examining posture and functional spinal motion, J. Spinal Disord., 1:279–283, 1989.

    Google Scholar 

  15. Culham, E. and Peat, M.,Spinal and shoulder complex posture: measurement using the 3SpaceIsotrak™, Clin. Rehab., 7:309–318, 1993.

    Article  Google Scholar 

  16. Stewart, S. G., Jull, G. A., Ng, J. K-F. and Willems, J. M.,An initial analysis of thoracic spine movement during unilateral arm elevation, The Journal of Manual and Manipulative Therapy, 3:15–20, 1995.

    Google Scholar 

  17. McKellop, H., Hoffman, R., Sarmiento, A., Bin, L. U. and Ebramzadeh, E.,Control of motion of tibial fractures with use of a functional brace or external fixator, J. Bone Joint Surg., 75A: 1019–1025, 1993.

    Google Scholar 

  18. Polhemus 3Space™ Users Manual, Polhemus, a Kaser Aerospace and Electronics Company. PO Box 560, Cholchester, VT, USA, 1990.

  19. Perie, D., Tate, A. J., Cheng, P. L. and Dumas, G. A.,Evaluation and calibration of an electromagnetic tracking device for biomechanical analysis of lifting tasks, J. Biomech., 35:293–7, 2002.

    Article  CAS  PubMed  Google Scholar 

  20. LaScalza, S., Arico, J. and Hughes, R..Effect of metal and sampling rate on accuracy of Flock of Birds electromagnetic tracking system. J Biomech., 36:141–4, 2003.

    Article  PubMed  Google Scholar 

  21. Ayres, M. B., Pearcy, M. J., Frick, R. A. and Sharpe, M. H.,Bilateral femoral rotations measured during walking: A new parameter to summarize and describe individual gait, Clin. Biomech., 11:354–357, 1996.

    Article  Google Scholar 

  22. Nazeran, H., Hosseini, H. G., Ayres, M. B. and Pearcy, M.,Power spectrum analysis of femoral rotations during gait, J. Med. Biol. Eng. Comput., 35:553–555, 1997.

    Article  CAS  Google Scholar 

  23. Bland, J. M. and Altman, D. G.,Statistical methods for assessing agreement between two methods of clinical measurement, The Lancet, 8:307–310, 1986.

    Google Scholar 

  24. Day, S. J., Dumas, G. A. and Murdoch, D. J.,Evaluation of a long-range transmitter for use with a magnetic tracking device in motion analysis, J. Biomech., 31:957–961, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Raab, F. H., Blood, E. B., Steiner, T. C. and Jones, H. R.,Magnetic position and orientation tracking system, IEEE T Aero. Elec. Sys., 15:709–718, 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jaberzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaberzadeh, S., Scutter, S. & Zoghi, M. Accuracy of an electromagnetic tracking device for measuring hip joint kinematics during gait: effects of metallic total hip replacement prosthesis, source-sensor distance and sensor orientation. Australas. Phys. Eng. Sci. Med. 28, 184 (2005). https://doi.org/10.1007/BF03178714

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF03178714

Key words

Navigation