Skip to main content
Log in

The effect of source to image distance on scattered radiation to the image receptor

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In performing experimental or theoretical studies of the effect of source to image distance on dose to the patient, it is conventional to assume that the dose to the image receptor should remain constant at each SID. However, if the proportion of scattered radiation reaching the image receptor depends on the SID, then this assumption will be invalid. In this paper, the effect of SID on the scatter fraction has been determined using a Monte Carlo simulation, using EGSnrcMP. The Monte Carlo code was first benchmarked against three independent experimental studies, and shown to give excellent agreement. In order to obtain agreement with experiment, it was necessary to include Rayleigh scatter and bound Compton effects and to properly simulate multiple scattering. The scatter fraction was then determined for a range of SIDs from 100 to 300 cm, for a range of conditions, including kVp setting, phantom thickness, field size, object to image distance, collimation to entrance surface, centre of phantom and image receptor, and a range of image receptor materials. The results indicate that the scatter fraction is independent of SID within a few percent, except when there is a large object to image distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brennan, P. C. and Nash, M.,Increasing FFD: an effective dose-reducing tool for lateral lumbar spine investigations, Radiog, 4: 251–259, 1998.

    Article  Google Scholar 

  2. Kebart, R. C. and James, C. D.,Benefits of increasing focal film distance, Radiol Technol, 62(6): 434–442, 1991.

    CAS  PubMed  Google Scholar 

  3. Poletti, J. L.,The effect of source to image distance on radiation risk to the patient, Australas Phys Eng Sci Med, 26(3): 78–82, 2003.

    Article  Google Scholar 

  4. Robinson, J. and McLean, D.,Extended focal-film distance: an analysis of the factors in dose reduction for the AP knee radiograph, Radiog, 7: 165–170, 2001.

    Article  Google Scholar 

  5. Barnea, G. and Dick, C. E.,Monte Carlo studies of x-ray scattering in transmission diagnostic radiology, Med Phys, 13(4): 490–495, 1986.

    Article  CAS  PubMed  Google Scholar 

  6. Cardoso, S. C., Goncales, O. D., Schechter, H. and Eichler, J.,Modelling the elastic scattering in diagnostic radiology: the importance of structure form factors, Phys Med Biol, 48(13): 1907–1916, 2003.

    Article  CAS  PubMed  Google Scholar 

  7. Chan, H.-P. and Doi, K.,Investigation of the performance of anti-scatter grids: Monte Carlo simulation studies, Phys Med Biol, 27(6): 785–803, 1982.

    Article  CAS  PubMed  Google Scholar 

  8. Chan, H.-P. and Doi, K.,The validity of Monte Carlo simulation in studies of scattered radiation in diagnostic radiology, Phys Med Biol, 28(2): 109–129, 1983.

    Article  CAS  PubMed  Google Scholar 

  9. Chan, H.-P. and Doi, K.,Physical characteristics of scattered radiation in diagnostic radiology: Monte Carlo simulation studies, Med Phys, 12(2): 152–165, 1984.

    Article  Google Scholar 

  10. Dance, D. R. and Day, G. J.,The computation of scatter in mammography by Monte Carlo methods, Phys Med Biol, 29(3): 237–247, 1984.

    Article  CAS  PubMed  Google Scholar 

  11. Dick, C. E., Soares, C. G. and Motz, J.W.,X-ray scatter for diagnostic radiology, Phys Med Biol, 23(6): 1076–1085, 1978.

    Article  CAS  PubMed  Google Scholar 

  12. Floyd, C. E. Jr, Lo, J. Y., Chotas, H. G. and Ravin, C. E.,Quantitative scatter measurement in digital radiography using a photostimulable phosphor imaging system, Med Phys, 18(3): 408–413, 1991.

    Article  PubMed  Google Scholar 

  13. Jordan, L. K., Floyd, C. E. Jr, Lo, J. Y. and Ravin, C. E.,Measurement of scatter fractions in erect posteroanterior and lateral chest radiography, Radiol, 188(1):215–218, 1993.

    Google Scholar 

  14. McLean, D. and Gray, J. E.,Scatter-to-primary absorption efficiency in screen-film and computed radiography systems, Eur J Radiol, 21: 212–216, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Ghorabie, F. H. H.,Development of a computer model using the EGS4 simulation code to calculate scattered x-rays through some materials, Australas Phys Eng Sci Med, 26(4): 185–193, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Motz, J. W. and Dick, C. E.,X-ray scatter background signals in transmission radiography, Med Phys, 2(5): 259–267, 1975.

    Article  CAS  PubMed  Google Scholar 

  17. Kawrakow, I. and Rogers, D. W. O.,The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, National Research Council of Canada: Otttawa. p. 287, 2002.

    Google Scholar 

  18. Jenkins, T. M., Nelson, W. R., Rindi, A., Nahum, A. E. and Rogers, D. W. O.,Monte Carlo Transport of Electrons and Photons, New York: Plenum Press, 1988.

    Google Scholar 

  19. Morin, R. L.,Monte Carlo Simulation in the Radiological Sciences, Boca Raton: CRC Press, 1988.

    Google Scholar 

  20. Andreo, P.,Monte Carlo techniques in medical radiation physics, Phys Med Biol, 36(7): 861–920, 1991.

    Article  CAS  PubMed  Google Scholar 

  21. Krestel, E.,Imaging Systems for Medical Diagnostics, 2nd ed), Berlin: Siemens Aktiengessellschaft, 1990.

    Google Scholar 

  22. Chan, H.-P. and Doi, K.,Energy and angular dependence of x-ray absorption and its effect on radiographic response in screen-film systems, Phys Med Biol, 28(5): 565–579, 1983.

    Article  CAS  PubMed  Google Scholar 

  23. Johns, H. E. and Cunningham, J. R.,The Physics of Radiology (4th ed), Springfield: Charles C Thomas, 1983.

    Google Scholar 

  24. Tucker, D. M., Barnes, G. T., and Chakraborty, D. P.,Semiempirical model for generating tungsten target x-ray spectra, Med Phys, 18(2):211–218, 1991.

    Article  CAS  PubMed  Google Scholar 

  25. Boone, J. M.,The three parameter equivalent spectra as an index of beam quality, Med Phys, 15(3): 304–310, 1988.

    Article  CAS  PubMed  Google Scholar 

  26. Caon, M., Bibbo, G., Pattison, J. and Bhat, M.,The effect on dose to computed tomography phantoms of varying the theoretical x-ray spectrum: A comparison of four diagnostic x-ray spectrum calculating codes, Med Phys, 25(6): 1021–1027, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Poletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poletti, J., McLean, D. The effect of source to image distance on scattered radiation to the image receptor. Australas Phys Eng Sci Med 27, 180–188 (2004). https://doi.org/10.1007/BF03178647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178647

Key words

Navigation