Skip to main content
Log in

The significance of the choice of Radiobiological (NTCP) models in treatment plan objective functions

  • Scientific Note
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

A Clinician’s discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at 10Gy (V10) and 20Gy (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abratt, R. P. and Morgan, G. W.,Lung toxicity following chest irradiation in patients with Lung cancer. Lung Cancer, Vol. 35(2): 103–109, 2002.

    Article  PubMed  Google Scholar 

  2. Alexander, M. A. R., Brooks, W. A. and Blake, S. W.,Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy. Physics in Medicine and Biology, Vol. 52(7): 1831–1843, 2007.

    Article  CAS  PubMed  Google Scholar 

  3. Amols, H. I. and Zaider, M.,Physician/Patient-driven risk assignment in Radiation Oncology: Reality or fancy? International Journal of Radiation Oncology, Biology, Physics, Vol. 38(3), 1997.

  4. Brahme, A.,Development of radiation therapy optimisation. Acta Oncologica, Vol. 39(5): 579–595, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Dale, E., Olsen, D. R. and Fossa, S. D.,Normal tissue complication probabilities correlated with late effects in the rectum after prostate conformal radiotherapy. International Journal of Radiation Oncology, Biology, Physics, Vol. 43(2): 385–91, 1999.

    CAS  PubMed  Google Scholar 

  6. Emami, B., Lyman, J., Brown, A., Coia, L., Goitein, M. and Munzenrider, J.E.,Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology, Biology, Physics., Vol. 21(1): 109–122, 1991.

    CAS  PubMed  Google Scholar 

  7. Fuss, M., Poljanc, K., Miller, D. W., Archambeau, J. O., Slater, J. M., Slater, J. D. and Hug, E. B.,Normal tissue complication probability (NTCP) calculations as a means to compare proton and photon plans and evaluation of clinical appropriateness of calculated values. International Journal of Cancer, Vol. 90(6): 351–8, 2000.

    Article  CAS  Google Scholar 

  8. Gagliardi, G., Bjohle, J., Lax, I., Ottolenghi, A., Eriksson, F., Liedburg, A., Lind, P. and Rutqvist, L. E.,Radiation pneumonitis after breast cancer irradiation: analysis of the complication probability using the relative seriality model. International Journal of Radiation Oncology, Biology, Physics, Vol. 46(2): 373–81, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Graham, M. V., Purdy, J. A., Emami, B., Harms, W., Bosch, W., Lockett, M. A. and Perez, C. A.,Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell Lung cancer (NSCLC). International Journal of Radiation Oncology, Biology, Physics, Vol. 45(2): 323–9, 1999.

    CAS  PubMed  Google Scholar 

  10. Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: current status and issues of interest. International Journal of Radiation Oncology, Biology, Physics, Vol. 51(4), 2001.

  11. Jackson, G., Kutcher, J., and Yorke, E. D.,Probability of radiationinducedcomplications for normal tissues with parallel architecture subjectto non-uniform irradiation. Medical Physics, Vol 20: 613–625, 1993.

    Article  CAS  PubMed  Google Scholar 

  12. Kallman, P., Agren, A. and Brahme, A.,Tumour and normal tissue responses to fractionated non-uniform dose delivery. International Journal of Radiation Biology, Vol 62: 249–262, 1992.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, T. H., Cho, K. H., Pyo, H. R., Lee, D. H., Lee, J. M., Kim, H. Y., Hwangho, B., Park, S. Y., Kim, J. Y., Shin, K. H. and Kim, D. Y.,Dose-volumetric Parameters for Predicting Severe Radiation Pneumonitis after Three-dimensional Conformal Radiation Therapy for Lung Cancer. Radiology, Vol. 235(1): 208–215, 2005.

    Article  PubMed  Google Scholar 

  14. Kwa, S. L., Lebesque, J. V., Theuws, C. M., Marks, L. B., Munley, M. T., Bentel, G., Oetzel, D., Spahn, U., Graham, M. V., Drzymala, R. E., Purdy, J. A., Lichter, A. S., Martel, M. K. and Ten Haken, K.,Radiation pneumonitis as a function of mean Lung dose: an analysis of pooled data of 540 patients. International Journal of Radiation Oncology, Biology, Physics, Vol. 42(1): 1–9, 1998.

    CAS  PubMed  Google Scholar 

  15. Kwa, S. L., Theuws, J. C., Wagenaar, A., Damen, E. M. F., Boersmaa, L. J., Baasb, P., Mullera, S. H. and Lebesque, J. V.,Evaluation of two dose-volume histogram reduction models for the prediction of radiation pneumonitis. Radiotherapy & Oncology, Vol. 48(1): 61–9, 1998.

    Article  CAS  Google Scholar 

  16. Lyman, J. T.,Complication probability as assessed from dose-volume Histograms. Radiation Res. Suppliment. Vol. 8: S13–9, 1985.

    Article  Google Scholar 

  17. Lebesque, J. V., Seppenwoolde, Y., Belderbos, J. S., de Jaeger, K., Henning, G. T., Hayman, J. A., Martel, M. K. and Ten Haken, R. K.,Radiation pneumonitis and NTCP models. International Journal of Radiation Oncology, Biology and Physics, Vol. 51(3): Supplement 1, 86–87, 2001.

    Google Scholar 

  18. Mattia, M., Del Giudice, P. and Caccia, B.,IMRT optimization: Variability of solutions and its radiobiological impact Medical Physics, Vol. 31 (5), 2004.

  19. Metcalfe, P., Kron, T. and Hoban, P.,The physics of radiotherapy X-rays from linear accelerators. Madison, Wis., Medical Physics Publishing, 1997.

    Google Scholar 

  20. Moiseenko, V., Battista, J., Van Dyk, J.,Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme. International Journal of Radiation Oncology, Biology, Physics, Vol. 46(4): 983–93, 2000.

    CAS  PubMed  Google Scholar 

  21. Niemierko, A. and Goitein, M.,Modeling of normal tissue response to radiation: The critical volume model. International Journal of Radiation Oncology, Biology, Physics, Vol 25: 135–145, 1993. or]22. Schhlegel, W., Bortfield, T., and Grosu, L.New Technologies in Radiation Oncology Published by Springer. ISBN 3-540-00321-5, 2006.

    CAS  PubMed  Google Scholar 

  22. Seppenwoolde, Y., Lebesque, J. V., Jaeger, K., Belderbos, J. A., Boermsa, L. J., Schilstra, C., Henning, G. T., Hayman, J. A., Martel, M. K., and Ten Haken, R. K.,Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. International Journal of Radiation Oncology, Biology, Physics, Vol. 55(3): 724–35, 2003.

    PubMed  Google Scholar 

  23. Severin, D., Connors, S. and Thompson, H.,Breast Radiotherapy with inclusion of internal mammary nodes: a comparison of techniques with three-dimensional planning. International Journal of Radiation Oncology, Biology, Physics., Vol. 55(3): 633–644, 2003.

    PubMed  Google Scholar 

  24. Smith, R. P., Dwight, E. H., Huq, M. S. and Yue, N. J.,Modern Radiation Treatment Planning and Delivery-From Röntgen to Real Time. Haematology/Oncology Clinics, 2006.

  25. Spearman, C., The proof and measurement of association between two things. The American Journal of Psychology, Vol. 15(1), 1904.

  26. School of Psychology, University of New England Web Statistics Unit materials.www.une.edu.au/WebStat/unit_materials/

  27. Stavrev, P., Stavreva, N., Niemierko, A. and Goiten, M.,The application of biological models to clinical data. Physica Medica, Vol 17(2): 71–82, 2001.

    Google Scholar 

  28. Tsougos, I., Mavroidis, P., Theodoroul, K., Rajala, J., Pitkanen, M. A., Holli, K., Ojala, A. T., Hyodynmaa, S., Jarvenpaa, R., Lind, B. K. and Kappas, C.,Clinical validation of the LKB model and parameter sets for predicting radiationinduced pneumonitis from breast cancer radiotherapy. Physics in Medicine & Biology, Vol. 51(3): L1–9, 2006.

    Article  Google Scholar 

  29. Van Luijk, P. and Bijl. H. P.,Data on dose-volume effects in the rat spinal cord do not support existing NTCP models International Journal of Radiation Oncology, Biology, Physics., Vol. 61(3): 892–900, 2005.

    PubMed  Google Scholar 

  30. Wang, X. H., Mohan, R., Jackson, A., Leibel, S. A., Fuks, Z. and Ling, C. C.,Optimisation of intensity-modulated 3D conformal treatment plans based on biological indices. Radiotherapy & Oncology, Vol. 37(2): 140–52, 1995.

    Article  CAS  Google Scholar 

  31. Warkentin, B., Stavrev, P., Stavreva, N., Field, C. and Fallone, B. G.,A TCP-NTCP estimation module using DVHs and known radiobiological models and parameter sets. Journal of Applied Clinical Medical Physics, Vol. 5(1): 50–63, 2004.

    Article  PubMed  Google Scholar 

  32. Stavreva, N. A. and Stavrev, P. V.,Some limitations of the application of the NTCP model describing the response of organs with ‘relatively serial’ structure. International Journal of Radiation Biology, Vol 78: 948–950, author reply 951-952, 2002.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J., Fuller, M., Vinod, S. et al. The significance of the choice of Radiobiological (NTCP) models in treatment plan objective functions. Australas. Phys. Eng. Sci. Med. 32, 81–87 (2009). https://doi.org/10.1007/BF03178632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178632

Key words

Navigation