Skip to main content
Log in

Determining superficial dosimetry for the internal canthus from the Monte Carlo simulation of kV photon and MeV electron beams

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This paper presents the findings of an investigation into the Monte Carlo simulation of superficial cancer treatments of an internal canthus site using both kilovoltage photons and megavoltage electrons. The EGSnrc system of codes for the Monte Carlo simulation of the transport of electrons and photons through a phantom representative of either a water phantom or treatment site in a patient is utilised. Two clinical treatment units are simulated: the Varian Medical Systems Clinac® 2100C accelerator for 6 MeV electron fields and the Pantak Therapax SXT 150 X-ray unit for 100 kVp photon fields. Depth dose, profile and isodose curves for these simulated units are compared against those measured by ion chamber in a PTW Freiburg MP3 water phantom. Good agreement was achieved away from the surface of the phantom between simulated and measured data. Dose distributions are determined for both kV photon and MeV electron fields in the internal canthus site containing lead and tungsten shielding, rapidly sloping surfaces and different density interfaces. There is a relatively high level of deposition of dose in tissue-bone and tissue-cartilage interfaces in the kV photon fields in contrast to the MeV electron fields. This is reflected in the maximum doses in the PTV of the internal canthus field being 12 Gy for kV photons and 4.8 Gy for MeV electrons. From the dose distributions, DVH and dose comparators are used to assess the simulated treatment fields. Any indication as to which modality is preferable to treat the internal canthus requires careful consideration of many different factors, this investigation provides further perspective in being able to assess which modality is appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verhaegen, F.,Evaluation of the EGSnrc Monte Carlo code for interface dosimetry near high-Z media exposed to kilovolt and 60Co photons, Phys. Med. Biol., 47:1691–1705, 2002.

    Article  PubMed  Google Scholar 

  2. Varian Medical Systems,Vision™ Electron Monte Carlo Algorithm: Reference Guide, P/N B4 01998R01A, 2003.

  3. Verhaegen, F., Nahum, A. E., Van de Putte, S. and Namito, Y.,Monte Carlo modelling of radiotherapy kV x-ray units, Phys. Med. Biol., 44:1767–1789, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Mainegra-Hing, E. and Kawrakow, I.,Efficient x-ray tube simulations, Med. Phys., 33(8):2683–2690, 2006.

    Article  PubMed  Google Scholar 

  5. Knöös, T., af Rosenschöld, P. M. and Wieslander, E.,Modelling of an Orthovoltage X-ray Therapy Unit with the EGSnrc Monte Carlo Package, J. Phys.: Conf. Ser., 74 012009 (10pp), 2007.

    Google Scholar 

  6. BJR Supplement 25,Central Axis Depth Dose Data for Use in Radiotherapy: 1996, British Institute of Radiology, Joint Working Party of the British Institute of Radiology and the Institution of Physics and Engineering in Medicine and Biology, 1996

  7. Rogers, D. W. O.,Fifty years of Monte Carlo simulations for medical physics, Phys. Med. Biol., 51:R287-R301, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Verhaegen, F. and Seuntjens, J.,Monte Carlo modelling of external radiotherapy photon beams, Phys. Med. Biol., 48:R107-R164, 2003.

    Article  CAS  PubMed  Google Scholar 

  9. Currie, B. E.,Transmission Factors, Depth Dose Curves and Relative Dose Profiles for MED-TEC MT-T-45 Medium and Small Tungsten Eyeshields in 6 and 9 MeV Electron Beams, Wellington Blood and Cancer Centre Internal Physics Report, 2003.

  10. Healy, B. J., Sylvander, S. and Nitschke, K. N.,Dose reduction form loss of backscatter in superficial x-ray radiation therapy with the Pantak SXT 150 unit, Australas. Phys. Eng. Sci. Med., 31(1):49–55, 2008.

    Article  CAS  PubMed  Google Scholar 

  11. Weaver, R. D., Gerbi, B. J. and Dusenbury, K. E.,Evaluation of eye shields made of tungsten and aluminium in high-energy electron beams, Int. J. Rad. Onc. Biol. Phys., 41(1):233–237, 1998.

    CAS  Google Scholar 

  12. Lambert, G. D., Sandland, M. R., Whitton, A. C., and Doughty, D.,Combining backscattered electrons and low energy photons to improve the dose distribution to an eyelid, Int. J. Rad. Onc. Biol. Phys., 11:617–620, 1985.

    CAS  Google Scholar 

  13. Wilson, C. M., Schreiber, D. P., Russell, J. D. and Hitchcock, P.,Electron beam versus photon beam radiation therapy for the treatment of orbital lymphoid tumors, Medical Dosimetry, 17:161–165, 1992.

    CAS  PubMed  Google Scholar 

  14. Verhaegen, F., Buffa, F. M. and Deehan, C.,Quantifying effects of lead shielding in electron beams: a Monte Carlo study, Phys. Med. Biol., 46:757–769, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Amdur, R. J., Kalbaugh, K. J., Ewald, L. M., Parsons, J. T., Mednedhall, W. M., Bova, F. J. and Million, R. R.,Radiation therapy for skin cancers near the eye: kilovoltage x-rays versus electrons, Int. J. Rad. Onc. Biol. Phys., 23(4):769–779, 1992.

    CAS  Google Scholar 

  16. Shiu, A. S., Tung, S. S., Gastrof, R. J., Hogstrom, K. R., Morrison, W. H. and Peters, L. J.,Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment, Int. J. Rad. Onc. Biol. Phys., 35(3):599–604, 1996.

    Article  CAS  Google Scholar 

  17. Baker, C. R., Luhana, F., and Thomas, S. J.,Absorbed dose behind eye shields during kilovoltage photon radiotherapy, British Journal of Radiography, 75:685–688, 2002.

    CAS  Google Scholar 

  18. Rogers, D. W. O., Faddegon B.A., Ding, G. X. and We, J.,BEAM: A Monte Carlo code to simulate radiotherapy treatment units, Med. Phys., 22(5):503–524, 1995.

    Article  CAS  PubMed  Google Scholar 

  19. Björk, P., Knöös, T. and Nilsson, P.,Influence of initial electron beam characteristics on Monte Carlo calculated absorbed dose distributions for linear accelerator electron beams, Phys. Med. Biol., 47:4019–4041, 2002.

    Article  PubMed  Google Scholar 

  20. Walters, B., Kawrakow, I. and Rogers, D. W. O.,DOSXYZnrc Users Manual, NRCC Report PIRS-794revB, 2007.

  21. Technical Report Series No. 398,Abosrbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water, International Atomic Energy Agency, 2000.

  22. Verhaegen, F., Reniers, B., Deblois, F., Devic, S., Seuntjens, J. and Hristov, D.,Dosimetric and microdosimetric study of contrast-enhanced radiotherapy with kilovolt x-rays, Phys. Med. Biol., 50:3555–3569, 2005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Currie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currie, B.E. Determining superficial dosimetry for the internal canthus from the Monte Carlo simulation of kV photon and MeV electron beams. Australas. Phys. Eng. Sci. Med. 32, 68–80 (2009). https://doi.org/10.1007/BF03178631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178631

Key words

Navigation