Skip to main content
Log in

Of what use is radiobiological modelling?

  • Guest Editorial
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aarup, L.R., et al.,The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage, Radiother Oncol, 2009.

  2. Alber, M.,et al., Guidelines for the Verification of IMRT, ESTRO: Brussels, Belgium. p. 1–127, 2008.

    Google Scholar 

  3. Curtis, S.B.,Lethal and potentially lethal lesions induced by radiation-a unified repair model (erratum Radiat Res 1989 119:584), Radiat Res, 106: 252–70, 1986.

    Article  CAS  PubMed  Google Scholar 

  4. Kutcher, G.J. and C. Burman,Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method, Int J Radiat Oncol Biol Phys, 16:1623–30, 1989.

    CAS  PubMed  Google Scholar 

  5. Ellis, F., inModern Trends in Radiotherapy, Deeley and Wood, Editors, Butterworth: London. p. 34–51, 1967.

    Google Scholar 

  6. Winston, B.M.,Correcting for radiotherapy treatment interuptions, Clinical Radiology, 20: 8–10, 1969.

    Article  CAS  PubMed  Google Scholar 

  7. Orton, C.G. and F. Ellis,A simplification in the use of the NSD concept in practical radiotherapy, Br J Radiol, 46: 529–37, 1973.

    Article  CAS  PubMed  Google Scholar 

  8. Fletcher, G.H.,Hypofractionation: lessons from complications, Radiother Oncol, 20: 10–5, 1991.

    Article  CAS  PubMed  Google Scholar 

  9. Metcalfe, P., T. Kron, and P. Hoban,The Physics of Radiotherapy X-rays from Linear Accelerators. 1st ed., Madison: Medical Physics Publishing, 1997.

    Google Scholar 

  10. Barendsen, G.W.,Dose fractionation, dose rate and iso-effect relationships for normal tissue responses, Int J Radiat Oncol Biol Phys, 8: 1981–97, 1982.

    CAS  PubMed  Google Scholar 

  11. Steel, G.G., ed.Basic Clinical Radiobiology. 2nd. ed, Arnold: London, 1997.

    Google Scholar 

  12. Singer, J.M., P. Price, and R.G. Dale,Radiobiological prediction of normal tissue toxicities and tumour response in the radiotherapy of advanced non-small-cell lung cancer, Br J Cancer, 78: 1629–33, 1998.

    CAS  PubMed  Google Scholar 

  13. Bentzen, S.M., M.I. Saunders, and S. Dische,From CHART to CHARTWEL in non-small cell lung cancer: clinical radiobiological modelling of the expected change in outcome, Clin Oncol (R Coll Radiol), 14: 372–81, 2002.

    CAS  Google Scholar 

  14. Saunders, M.I., et al.,Experience with CHART, Int J Radiat Oncol Biol Phys, 21: 871–8, 1991.

    CAS  PubMed  Google Scholar 

  15. Denham, J.W., et al., Erythema: goodbye LQ!, Radiother Oncol, 44: 191–3, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. Hamilton, C.S., et al.,Underprediction of human skin erythema at low doses per fraction by the linear quadratic model, Radiother Oncol, 40: 23–30, 1996.

    Article  CAS  PubMed  Google Scholar 

  17. Kirkpatrick, J.P., J.J. Meyer, and L.B. Marks,The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery, Semin Radiat Oncol, 18: 240–3, 2008.

    Article  PubMed  Google Scholar 

  18. Jones, L., P. Hoban, and P. Metcalfe,The use of the linear quadratic model in radiotherapy: a review, Australas Phys Eng Sci Med, 24: 132–46., 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Joiner, M. and A. van der Kogel, eds.Basic Clinical Radiobiology. 4th ed, Hodder Education, United Kingdom: United Kingdom, 2009.

  20. van Baardwijk, A., et al.,Radiation dose prescription for non-small-cell lung cancer according to normal tissue dose constraints: an in silico clinical trial, Int J Radiat Oncol Biol Phys, 71: 1103–10, 2008.

    PubMed  Google Scholar 

  21. Ellis, F.,Dose, time and fractionation: a clinical hypothesis, Clin Radiol, 20: 1–7, 1969.

    Article  CAS  PubMed  Google Scholar 

  22. Webb, S. and A.E. Nahum,A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density, Phys Med Biol, 38: 653–66, 1993.

    Article  CAS  PubMed  Google Scholar 

  23. Goitein, M. and T.E. Schultheiss,Strategies for treating possible tumor extension: some theoretical considerations, Int J Radiat Oncol Biol Phys, 11: 1519–28, 1985.

    CAS  PubMed  Google Scholar 

  24. Lyman, J.T.,Complication probability as assessed from dose-volume histograms, Radiation Research Supplement, 8: 1985.

  25. Schultheiss, T.E., C.G. Orton, and R.A. Peck,Models in radiotherapy: volume effects, Med Phys, 10: 410–5, 1983.

    Article  CAS  PubMed  Google Scholar 

  26. Kallman, P., A. Agren, and A. Brahme,Tumour and normal tissue responses to fractionated non-uniform dose delivery, Int J Radiat Biol, 62: 249–62, 1992.

    Article  CAS  PubMed  Google Scholar 

  27. Ten Haken, R.K., et al.,Use of Veff and iso-NTCP in the implementation of dose escalation protocols, Int J Radiat Oncol Biol Phys, 27: 689–95, 1993.

    CAS  PubMed  Google Scholar 

  28. Brahme, A.,Optimized radiation therapy based on radiobiological objectives, Semin Radiat Oncol, 9: 35–47., 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Sodertrom, S. and A. Brahme,Optimization of the dose delivery in a few field techniques using radiobiological objective functions, Med Phys, 20: 1201–10., 1993.

    Article  CAS  PubMed  Google Scholar 

  30. Hoffmann, A.L., et al.,Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects, Phys Med Biol, 53: 6345–62, 2008.

    Article  PubMed  Google Scholar 

  31. Fowler, J.F., et al.,What hypofractionated protocols should be tested for prostate cancer?, Int J Radiat Oncol Biol Phys, 56: 1093–104, 2003.

    Article  PubMed  Google Scholar 

  32. Fenwick, J.D., et al.,Escalation and Intensification of Radiotherapy for Stage III Non-small Cell Lung Cancer: Opportunities for Treatment Improvement, Clin Oncol (R Coll Radiol), 21: 343–60, 2009.

    CAS  Google Scholar 

  33. Box, G.E.P., ed.Optimization of Cancer Radiotherapy. Proceedings of the 2nd International conference on Dose, Time and Fractionation in Radiation Oncology. ed. B.R. Pailiwal, D.E. Herbert, and C.G. Orton, American Institute of Physics: New York, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holloway, L. Of what use is radiobiological modelling?. Australas. Phys. Eng. Sci. Med. 32, xi–xiv (2009). https://doi.org/10.1007/BF03178628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178628

Navigation