Skip to main content
Log in

The use of a treatment planning system to investigate the potential for transmission dosimetry in detecting patient breathing during breast 3D CRT

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Transmission dosimetry has the potential for identifying dosimetry errors during radiotherapy treatments by detecting changes in effective beam path between the planned and delivered treatment geometry. In the current study, the Pinnacle treatment planning system was used to model transmitted dose in a “virtual” EPID to investigate the possibility of using transmission dosimetry for detecting patient breathing and setup errors in breast conformal radiotherapy treatments. An opposing tangential beams treatment plan was used as a proof-of-principle study for deliberately introducing shifts in the position of the beams and virtual EPID relative to the CT data, to simulate shallow and deep breathing excursions of 2 mm and 11 mm, respectively. In addition, breathing was combined with setup errors of 0 mm and 2.5 mm in a given direction for each beam. Due to spatial limitations in the original CT data, the CT data was modified to include an additional volume of air surrounding the patient to allow for the virtual EPID to be modelled at sufficient distances from the beam focus. Breathing excursions of both 2 mm and 11 mm could be detected in the transmitted dose planes below the patient. Breathing combined with a 2.5 mm set up errors in the superior-inferior direction further accentuated the distribution of the dose errors in the superior-inferior directions. The predicted changes in transmitted dose due to the simulated delivery errors shows promise for using transmitted dosimetry in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dahlgren, C. V., Ahnesjo, A., Montelius, A. and Rikner, G.Portal dose image verification: formalism and application of the collapsed cone superposition method, Phys. Med. Biol., 47(24): 4371–4387., 2002.

    Article  PubMed  Google Scholar 

  2. McCurdy, B. M., Luchka, K. and Pistorius, S.Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device, Med. Phys., 28(6): 911–924., 2001.

    Article  CAS  PubMed  Google Scholar 

  3. McNutt, T. R., Mackie, T. R., Reckwerdt, P., Papanikolaou, N, and Paliwal, B. R.Calculation of portal dose using the convolution/superposition method, Med. Phys., 23(4): 527–535., 1996.

    Article  CAS  PubMed  Google Scholar 

  4. Pasma, K. L., Heijmen, B. J., Kroonwijk, M. and Visser, A. G.Portal dose image (PDI) prediction for dosimetric treatment verification in radiotherapy. I. An algorithm for open beams, Med. Phys., 25(6): 830–840., 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Reich, P., Bezak, E., Mohammadi, M. and Fog, L.The prediction of transmitted dose distributions using a 3D treatment planning system, Australas. Phys. Eng. Sci. Med., 29(1): 18–29, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. Siebers, J. V., Kim, J. O., Ko, L., Keall, P. J. and Mohan, R.Monte Carlo computation of dosimetric amorphous silicon electronic portal images, Med. Phys., 31(7): 2135–2146., 2004.

    Article  PubMed  Google Scholar 

  7. van Elmpt, W. J., Nijsten, S. M., Mijnheer, B. J. and Minken, A. W.Experimental verification of a portal dose prediction model, Med. Phys., 32(9): 2805–2818., 2005.

    Article  PubMed  Google Scholar 

  8. Van Esch, A., Vanstraelen, B., Verstraete, J., Kutcher, G. and Huyskens, D.Pre-treatment dosimetric verification by means of a liquid-filled electronic portal imaging device during dynamic delivery of intensity modulated treatment fields, Radiother. Oncol., 60(2): 181–190., 2001.

    Article  PubMed  Google Scholar 

  9. Wong, J. W., Slessinger, E. D., Hermes, R. E., Offutt, C. J., Roy, T. and Vannier, M. W.Portal dose images. I: Quantitative treatment plan verification, Int. J. Radiat. Oncol. Biol. Phys., 18(6): 1455–1463., 1990.

    CAS  PubMed  Google Scholar 

  10. Essers, M. and Mijnheer, B. J.In vivo dosimetry during external photon beam radiotherapy, Int. J. Radiat. Oncol. Biol. Phys., 43(2): 245–259, 1999.

    CAS  PubMed  Google Scholar 

  11. Herbert, C. E., Ebert, M. A. and Joseph, D. J.Feasible measurement errors when undertaking in vivo dosimetry during external beam radiotherapy of the breast, Med. Dosim., 28(1): 45–48, 2003.

    Article  PubMed  Google Scholar 

  12. Heukelom, S., Lanson, J. H. and Mijnheer, B. J.In vivo dosimetry during pelvic treatment, Radiother. Oncol., 25(2): 111–120, 1992.

    Article  CAS  PubMed  Google Scholar 

  13. Morton, J. P., Bhat, M., Kovendy, A. and Williams, T.Evaluation of MOSFETs for entrance dose dosimetry for 6 and 10 MV photons with a custom made build up cap, Australas. Phys. Eng. Sci. Med., 30(2): 120–126, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Piermattei, A., Fidanzio, A., Azario, L., Grimaldi, L., D’Onofrio, G., Cilla, S., Stimato, G., Gaudino, D., Ramella, S., D’Angelillo, R., Cellini, F., Trodella, L., Russo, A., Iadanza, L., Zucca, S., Fusco, V., Di Napoli, N., Gambacorta, M. A., Balducci, M., Cellini, N., Deodato, F., Macchia, G. and Morganti, A. G.Application of a practical method for the isocenter point in vivo dosimetry by a transit signal, Phys. Med. Biol., 52(16): 5101–5117, 2007.

    Article  PubMed  Google Scholar 

  15. Tung, C. J., Wang, H. C., Lo, S. H., Wu, J. M. and Wang, C. J.In vivo dosimetry for external photon treatments of head and neck cancers by diodes and TLDS, Radiat. Prot. Dosimetry, 111(1): 45–50, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Ansbacher, W.Three-dimensional portal image-based dose reconstruction in a virtual phantom for rapid evaluation of IMRT plans, Med. Phys., 33(9): 3369–3382., 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Boellaard, R., van Herk, M. and Mijnheer, B. J.A convolution model to convert transmission dose images to exit dose distributions, Med. Phys., 24(2): 189–199., 1997.

    Article  CAS  PubMed  Google Scholar 

  18. Hansen, V. N., Evans, P. M. and Swindell, W.The application of transit dosimetry to precision radiotherapy, Med. Phys., 23(5): 713–721., 1996.

    Article  CAS  PubMed  Google Scholar 

  19. McNutt, T. R., Mackie, T. R., Reckwerdt, P. and Paliwal, B. R.Modeling dose distributions from portal dose images using the convolution/superposition method, Med. Phys., 23(8): 1381–1392., 1996.

    Article  CAS  PubMed  Google Scholar 

  20. Partridge, M., Ebert, M. and Hesse, B. M.IMRT verification by three-dimensional dose reconstruction from portal beam measurements, Med. Phys., 29(8): 1847–1858., 2002.

    Article  CAS  PubMed  Google Scholar 

  21. Wendling, M., Louwe, R. J., McDermott, L. N., Sonke, J. J., van Herk, M. and Mijnheer, B. J.Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method, Med. Phys., 33(2): 259–273., 2006.

    Article  PubMed  Google Scholar 

  22. van Elmpt, W. J., Nijsten, S. M., Schiffeleers, R. F., Dekker, A. L., Mijnheer, B. J., Lambin, P. and Minken, A. W. A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images, Med. Phys., 33(7): 2426–2434, 2006.

    Article  PubMed  Google Scholar 

  23. Dahlgren, C. V., Eilertsen, K., Jorgensen, T. D. and Ahnesjo, A.Portal dose image verification: the collapsed cone superposition method applied with different electronic portal imaging devices, Phys. Med. Biol., 51(2): 335–349. Epub 2006 Jan 2004., 2006.

    Article  PubMed  Google Scholar 

  24. Pasma, K. L., Vieira, S. C. and Heijmen, B. J.Portal dose image prediction for dosimetric treatment verification in radiotherapy. II. An algorithm for wedged beams, Med. Phys., 29(6): 925–931., 2002.

    Article  PubMed  Google Scholar 

  25. Fielding, A. L., Evans, P. M. and Clark, C. H.Verification of patient position and delivery of IMRT by electronic portal imaging, Radiother. Oncol., 73(3): 339–347, 2004.

    Article  PubMed  Google Scholar 

  26. Lamberts, K., Nijsten, S., Lambin, P. and Minken, A. 2005 Qualitative determination of errors causing portal transit dose differences using gamma evaluation parameters. In:8th Biennial ESTRO Meeting on Physics and Radiation Technology for Clinical Radiotherapy, (Lisbon, Portugal pp S131–S132

  27. Depuydt, T., Van Esch, A. and Huyskens, D. P.A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation, Radiother. Oncol., 62(3): 309–319, 2002.

    Article  PubMed  Google Scholar 

  28. George, R, Keall, P. J., Kini, V. R., Vedam, S. S., Siebers, J. V., Wu, Q., Lauterbach, M. H., Arthur, D. W. and Mohan, R.Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery, Med. Phys., 30(4): 552–562, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Frazier, R. C., Vicini, F. A., Sharpe, M. B., Yan, D., Fayad, J., Baglan, K. L., Kestin, L. L., Remouchamps, V. M., Martinez, A. A. and Wong, J. W.Impact of breathing motion on whole breast radiotherapy: a dosimetric analysis using active breathing control, Int. J. Radiat. Oncol. Biol. Phys., 58(4): 1041–1047, 2004.

    PubMed  Google Scholar 

  30. Hector, C. L., Webb, S. and Evans, P. M.The dosimetric consequences of inter-fractional patient movement on conventional and intensity-modulated breast radiotherapy treatments, Radiother. Oncol., 54(1): 57–64, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Saliou, M. G., Giraud, P., Simon, L., Fournier-Bidoz, N., Fourquet, A., Dendale, R., Rosenwald, J. C. and Cosset, J. M.[Radiotherapy for breast cancer: respiratory and set-up uncertainties], Cancer Radiother., 9(6–7): 414–421, 2005.

    CAS  PubMed  Google Scholar 

  32. McDermott, L. N., Wendling, M., Sonke, J. J., van Herk, M. and Mijnheer, B. J.,Anatomy changes in radiotherapy detected using portal imaging, Radiother. Oncol., 79(2): 211–217. Epub 2006 May 2015., 2006.

    Article  PubMed  Google Scholar 

  33. Kroonwijk, M., Pasma, K. L., Quint, S., Koper, P. C., Visser, A. G. and Heijmen, B. J.In vivo dosimetry for prostate cancer patients using an electronic portal imaging device (EPID); demonstration of internal organ motion, Radiother. Oncol., 49(2): 125–132., 1998.

    Article  CAS  PubMed  Google Scholar 

  34. Mohammadi, M. and Bezak, E.,Two dimensional transmitted dose measurements using a liquid ionisation chamber EPID, Phys. Med. Biol., 51(1–15, 2006.

    Article  Google Scholar 

  35. Chin, P. W., Spezi, E. and Lewis, D. G.Monte Carlo simulation of portal dosimetry on a rectilinear voxel geometry: a variable gantry angle solution, Phys. Med. Biol., 48(16): N231–238., 2003.

    Article  Google Scholar 

  36. Kubo, H. D. and Hill, B. C.Respiration gated radiotherapy treatment: a technical study, Phys. Med. Biol., 41(1): 83–91, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Mavroidis, P., Axelsson, S., Hyodynmaa, S., Rajala, J., Pitkanen, M. A., Lind, B. K. and Brahme, A.,Effects of positioning uncertainty and breathing on dose delivery and radiation pneumonitis prediction in breast cancer, Acta Oncol, 41(5): 471–485, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Reich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, P.D., Bezak, E. The use of a treatment planning system to investigate the potential for transmission dosimetry in detecting patient breathing during breast 3D CRT. Australas. Phys. Eng. Sci. Med. 31, 110–121 (2008). https://doi.org/10.1007/BF03178585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178585

Key words

Navigation