Skip to main content
Log in

Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The “error function” derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hogstrom, K. R., Mills, M. D and Almond, P. R.Electron Beam Dose Calculations. Phys. Med. Biol. 26: pp445–459, 1981.

    Article  CAS  PubMed  Google Scholar 

  2. Jette, D.Electron Dose Calculation using Multiple-Scattering Theory. A Gaussian Multiple — Scattering Theory. Medical Physics. 15: pp123–137, 1988.

    Article  CAS  PubMed  Google Scholar 

  3. Starkschall, G., Shiu, A. S., Buynowski. S. W., Wang, L. L., Low, D. A and Hogstrom, K. AEffect of Dimensionality of Heterogeneity Corrections on the Implementation of a Three-Dimensional Electron Pencil-Beam Algorithm. Phys. Med. Biol. 36: pp207–228, 1991

    Article  CAS  PubMed  Google Scholar 

  4. Eyges, L.Multiple Scattering with Energy Loss. Phys. Rev. 74: pp1534–1535, 1948.

    Article  CAS  Google Scholar 

  5. Klevenhagen, S. C.Physics of Electron Beam Therapy. Adam Hilger Ltd. Bristol. England, 1985.

    Google Scholar 

  6. Antolak, J. A., Mah, E and Scrimger, J. W.Optimisation of pencil beam widths for electron-beam dose calculations. Med. Phys. 22: pp411–419, 1995.

    Article  CAS  PubMed  Google Scholar 

  7. Lax, I.Inhomogeneity Corrections in Electron-Beam Dose Planning. Limitations with the Semi-Infinite Slab Approximation. Phys. Med. Biol. 31: pp879–892, 1986.

    Article  CAS  PubMed  Google Scholar 

  8. Jette, D.Radiation Therapy Physics; Electron Beam Dose Calculations. Springer-Verlag, Berlin. Germany, 1995.

    Google Scholar 

  9. Karlsson, M. G., Karlsson, M and Zackrisson, B.Intensity Modulations with Electrons: Calculations, Measurements and Clinical Applications. Phys. Med. Biol. 43: pp1159–1169, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Ebert, M. A and Hoban P. W.Possibilities for Tailoring Dose Distributions through the Manipulation of Electron Beam Characteristics. Phys. Med. Biol. 42: pp2065–2081, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Hogstrom, K. R., Antolak, J. A., Kudchadker, R. J., Ma, C. M and Leavitt, D. D.Modulated electron therapy, in Palta, J. R. and Mackie, T. R. (eds) Intensity-Modulated Radiation Therapy: The State of the Art, American Association of Physicists in Medicine Monograph 29, Medical Physics Publishing, Madison WI, 2003.

    Google Scholar 

  12. Low, D. A., Starkschall, G., Bujnowski, S. W., Wang, L. L and Hogstrom, K. R.Electron Bolus Design for Radiotherapy Treatment Planning: Bolus Design Algorithms. Med. Phys. 19: pp115–24, 1992.

    Article  CAS  PubMed  Google Scholar 

  13. Kudchadker, R. J., Hogstrom, K. R., Garden, A. S., McNeese, M. D., Boyd, R. A and Antolak J. A.Electron Conformal Radiotherapy Using Bolus and Intensity Modulation. Int. J. Rad. Oncol. Biol. Phys. 53: pp1023–1037, 2002.

    Google Scholar 

  14. Fraass, B. A., Smathers, J and Deye, J.Summary and Recommendations of a National Cancer Institute Workshop on Issues Limiting the Clinical use of Monte Carlo Dose Calculation Algorithms for Megavoltage External Beam Radiation Therapy. Medical Physics. 30: pp3206–3216, 2003.

    Article  PubMed  Google Scholar 

  15. Chui, C. S and Mohan, R.Extraction of Pencil Beam Kernels by the Deconvolution Method. Med. Phys. 15: pp138–144, 1988.

    Article  CAS  PubMed  Google Scholar 

  16. Brahme, A., Kraepelien, T. and Svensson, H.Electron and photon beams from a 50 MeV racetrack microtron. Acta Radiol. Oncol. 19: pp305–319, 1980.

    Article  CAS  PubMed  Google Scholar 

  17. McParland, B. J.Using Background Subtraction for Measuring the Dose Distribution of an Electron Pencil Beam. Med. Phys. 14: pp406–409, 1986.

    Article  Google Scholar 

  18. Suchowerska, N., Hoban, P., Davison, A and Metcalfe, P.Perturbation of Radiotherapy Beam by Radiographic Film; Measurements and Monte Carlo Simulations. Phys. Med. Biol. 44: pp1755–1765, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Dutreix, J and Dutreix, A.Film Dosimetry of High Energy Electrons. Ann. NY. Acad. Sci. 161: pp33–43, 1969.

    Article  CAS  PubMed  Google Scholar 

  20. Khan, F. M., Doppke, K. P., Hogstrom, K. R., Kutcher, G. J., Nath, R., Prasad, S. C., Purdy, J. A., Rozenfeld. M and Werner, B. L.Clinical Electron-Beam Dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25. Med. Phys. 18: pp73–109, 1991.

    Article  CAS  PubMed  Google Scholar 

  21. McKinlay, A. F.Thermoluminescence Dosimetry. Adam Hilger Ltd. Norwich, England, 1981.

    Google Scholar 

  22. Rogers, D. W. O., Faddegon, B. A., Ding, G. X., Ma, C. M and Wei, J.BEAM: A Monte Carlo Code to Simulate Radiotherapy Treatment Units. Med. Phys. 22: pp503–524, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Kawrakow, J and Rogers, D. W. O.The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. Technical Report PIRS-701. National Research Council of Canada. Ottawa, Canada, 2000.

    Google Scholar 

  24. Khan, F. M.Dose Distribution Algorithms for Electron Beams, in Khan, FM. and Potish, RA. (eds). Treatment Planning in Radiation Oncology, Lippincott Williams and Wilkins, Philadelphia PA, 2000.

    Google Scholar 

  25. Van Battum, L. J and Huizenga, H.Film Dosimetry of Clinical Electron Beams. Int. J. Rad. Oncol. Biol. Phys. 18: pp69–76.

  26. Ebert, M. A and Hoban P. W.A Monte Carlo Investigation of Electron Beam Applicator Scatter. Med. Phys. 22: pp1431–1435, 1995.

    Article  CAS  PubMed  Google Scholar 

  27. Korevaar, E. W., Huizenga, H., Lof, J., Stroom, J. C., Leer, J. W. H and Brahme, A.Investigation of the Added Value of High-Energy Electrons in Intensity-Modulated Radiotherapy: Four clinical cases. Int. J. Radt. Oncol. Biol. Phys. 52: pp236–253, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Barnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, M.P., Ebert, M.A. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach. Australas. Phys. Eng. Sci. Med. 31, 10–17 (2008). https://doi.org/10.1007/BF03178448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178448

Key words

Navigation